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Recent results on electron tunneling across a potential barrier, inferred from observations or obtained from
theoretical models, have suggested superluminal or instantaneous barrier traversal times. In this work we
investigate relativistic wave-packet dynamics for an electron tunneling through a potential barrier employing
space-time resolved solutions to relativistic quantum field theory (QFT) equations. We prove by linking the QFT
property of microcausality to the wave-packet behavior that the tunneling dynamics is fully causal, precluding
instantaneous or superluminal effects. We illustrate these results by performing numerical computations for an
electron tunneling through a potential barrier for standard tunneling as well for Klein tunneling. In all cases
(Klein tunneling or regular tunneling across a standard or a supercritical potential) the transmitted wave packet
remains in the causal envelope of the propagator, even when its average position lies ahead of the average position

of the corresponding freely propagated wave packet.
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I. INTRODUCTION

Tunneling is one of the most intriguing quantum phenom-
ena. Although tunneling underlies many important processes
in about every area concerned by quantum physics (see, e.g.,
[1-7] for recent observations), its precise mechanism has re-
mained controversial [8,9]. Despite experimental data coming
from different areas, from strong field tunneling ionization
[2,5,10-12] to cold atoms [3], neutron optics [13], or con-
densed matter [14], there seems to be no solution in view [15]
to the tunneling time problem (the time spent by a particle
inside the barrier) or, equivalently, the arrival time (whether
a particle that tunnels through a barrier arrives earlier than
a freely propagating particle). Indeed, due to the ambiguity
of measuring time in quantum mechanics (there is no time
operator in the standard formalism) any observed tunneling
time will depend on the model employed to extract the time
interval from the observed data.

In particular, experiments involving electron photoioniza-
tion have reported results interpreted to indicate instantaneous
tunneling times [2,5,10,11]. Such interpretations rely on mod-
els that intrinsically involve disputed approximations [16],
generally employing a nonrelativistic and often semiclassi-
cal framework. Perhaps somewhat more surprisingly, several
works based on a first-quantized relativistic framework
[17-25] have concluded on the possibility of superluminal
arrival times for electrons. Such superluminal transmissions
could potentially bring serious issues with causality, even
though it is sometimes asserted that these effects do not seem
to lead to signaling [24]. Other investigations carried out
within relativistic quantum mechanics have, on the contrary,
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not noted any superluminal effects at the level of the wave
function [26-29].

In this work, we investigate the tunneling dynamics in a
second-quantized framework. More specifically, we will em-
ploy a computational relativistic quantum field theory (QFT)
approach in order to follow the space-time resolved dynamics
of an electron tunneling through an electrostatic potential
barrier represented by a background field. The electron is
modeled as a wave packet initially defined on a compact
support launched towards a potential barrier. We will prove
that microcausality of the fermionic quantum field implies that
the electron wave-packet density evolves causally, thereby
ensuring the absence of any superluminal effects such as
instantaneous tunneling times. The present method allows
us to treat on the same footing different types of tunneling
effects: the familiar one characterized by exponentially de-
caying waves inside the barrier, as well as Klein tunneling
(with undamped oscillating waves in the barrier) for super-
critical barriers (that is, barriers with a potential above the
pair-production threshold).

We will begin by describing our theoretical approach in
Sec. II, where we will define the wave packet as a second-
quantized state and introduce the particle density operator
from field operators obeying the Dirac equation. In Sec. III,
we will see that microcausality holds for a fermionic field
in the presence of a background potential and use this result
to show that the tunneled wave-packet density is constrained
by a causal evolution: the wave-packet density cannot leak
outside the light cone. We will then give (Sec. IV) numerical
results obtained with our QFT framework for three typical

©2025 American Physical Society
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cases of tunneling, all cases displaying a causal behavior of
the transmitted wave packet: standard tunneling through a
nonradiating barrier (similar to the familiar tunneling situa-
tion known in nonrelativistic quantum mechanics), standard
tunneling in the presence of a slightly radiating barrier (in
which the transmitted wave packet is overshadowed by the
electron density due to pair production), and Klein tunneling
through a supercritical barrier, in which it is known that tun-
neling is mediated by pair production. We will discuss our
results and conclude in Sec. V.

II. FRAMEWORK: QFT WITH A
BACKGROUND POTENTIAL

A. First- and second-quantized evolutions

Our approach is based on a computational QFT framework
[30], recently extended to treat particle scattering across a
finite barrier [31] (see also [32,33] for related recent work).
In this framework, an electron wave packet is described by a
relativistic fermionic Dirac field, while the potential barrier on
which the electron scatters will be described by a background
“classical” field [34].

Let us first introduce the free Dirac Hamiltonian

Hy = —ihco,dy + fmc? (1)

which has the eigenvalues +|E,| = £,/ p*c? + m*c*. « and
are the usual Dirac matrices (recall that in one spatial dimen-
sion, we can neglect spin flip and replace ¢, and 8 by the Pauli
matrices o and o3, respectively), m the electron mass, and c is
the light velocity. The positive and negative energy solutions
of Eq. (1) are, respectively, given by

1 .
Up(x) = cp e,
mc? +E,

1 4
wp(x) = ( cp )glpx- (2)
me? —E,
The full first-quantized Hamiltonian
H =Hy+V(x), 3)

where V (x) is a rectangularlike potential barrier. The Hamilto-
nian H generates a unitary evolution. Let U denote the unitary
evolution operator of the full Hamiltonian with elements in the
free Dirac basis given by

Uyw, (t) = (vil exp (—iH1/h)[wp). “4)

The second-quantized creation and annihilation operators
for particle and antiparticles will be labeled b; and b, (for par-
ticles) and d I‘, and d,, (for antiparticles). Since we are dealing
with a fermionic field the creation and annihilation operators
anticommute, [b,, b]t]+ = [d,, d;]+ = &§(p — k). ||0)) defines
the vacuum state, i.e., b,||0)) = d,[|0)) = 0. We will be work-
ing as usual in the Heisenberg picture, so that these operators
evolve according to [30]

by(t) = /dk(Uupvk(t)bk(O)JrUu,,wk(t)d,j(o)), ®)

di(t) = f Ak (Uyu (DB (0) + Uy ()] (0)) ()

and their conjugates. Equations (5) and (6) give the QFT
dynamics in terms of the first-quantized evolution operators.
These equations will be seen to be the building blocks to carry
out numerical computations.

B. Densities and field operators

For the purpose of investigating causality, we find it conve-
nient for a matter of presentation to start from an initial wave
packet perfectly localized within a compact spatial support.
The second-quantized state describing this initial wave packet
is written as

lx) = / dp(g+(p)b}(0) + g (p)dj(ON[0),  (7)

where g1 (p) are the wave-packet amplitudes in momentum
space. As it is well known [35,36] a compactly localized state
must contain both positive and negative energy components,
hence the presence of both creation operators b}, and d; in
Eq. (7).

The particle density at any given time is given by the
expectation value

p(t,x) = (xIlp, 0lx), (8)

where the density operator p(t, x) is defined by

(t,x) = 'z, x)d@, x). 9)

>

Recall that in the absence of a wave packet, the density
would be given instead by the vacuum expectation value
(Ol p(z, x)110).

@(z, x) is the field operator. Since we are working with
states having compact spatial support, we depart from the
usual definition of the field operators and define them instead
through [37]

d(1,x) = / dp(bp(t)vy(x) + dp(Hyw,y(x))  (10)

and its Hermitian conjugate
®T(r,x) = / dpBi ()i (x) +di(Owi(x).  (11)

Indeed the standard field operators [36] cannot describe a
compactly localized state. We stress, however, that the results
described in this work do not depend on taking an initial com-
pact state; the proofs given below also hold for the standard
field operators and the quantum states of pure positive energy
presenting infinite tails. The field operators (10) and (11)
obey an important property: the equal-time anticommutator is
given by

[DF(r, x), D1, x)]4 = 8(x' —x) (12)

just like the familiar field operators of the free Dirac field [38].
Equation (12) is proved in Appendix A.

The computation of the density proceeds by pluging in
Eqgs. (9), (7) and (10), (11) into Eq. (8).
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This gives
p(t.x) = (O] / dp(g'. by + 8 (P)dy)
x { f f dpidpav, (), ()], ()b, (1)

+ / / dprdpaw], (O, (O, (D) (1)

+ (// dprdpav) ()w,, ()] (), (1) + H.c.> }

x / dp(g+ ()b, + g—(p)d})|0). (13)
where H.c. is the conjugate of the preceding term. This density
can be parsed as a sum of three terms, each term correspond-
ing to the expectation value obtained for each of the lines
given by Eqgs. (13),

pt,x) = pi1(t,x) + pa(t, x) + p3(t, x). (14)

p1(t, x) represents a “particle” density, in the sense in which
p1 is given only in terms of the positive energy spinor v, of
Eq. (2). The computation is derived by Egs. (B1)-(B5) of
Appendix B. For the same reason, p,(f,x) will be said to
represent an “antiparticle” density [it is given by Eq. (B6)],
and p3(¢, x) represents a “mixed term” [see Eq. (B7)].

Note while p; only depends on the wave packet (p3 van-
ishes if there is no wave packet), in the expressions of p; and
0> there is only a single term that does not depend on the
wave packet [the first line in Egs. (B5) and (B6)]. This term
gives the density originating from pair production. Hence, by
subsuming these two lines into py,.(, x), the total density can
also be parsed as

p(t, x) =pvac(tvx)+pwp(t’x)’ (15)

where py, is the “vacuum” particle density (due solely to the
background potential) and oy, is the part of the density due to
the presence of the wave packet.

The total number of particles N(¢) = f dx p(t, x), obtained
by integrating the density over all space, can be parsed as [37]

N(t) = /dx[,ol(t,x) + 02(t, )] = Nyac (1) + 1 (16)

given that f dx p3(x) = 0 (the wave packet counts as one
particle). N(¢) can also be written as the normal-ordered ex-
pectation value of the number operator N(t) written in the
standard form

N(t) = f dp(b} ()b, (t) + d}(1)d,(1)). (17)

III. MICROCAUSALITY AND THE IMPOSSIBILITY
OF SUPERLUMINAL TUNNELING

A. Microcausality with a background field

Microcausality as a general statement is the assertion that
observables that are spacelike separated commute. While it
may sometimes be considered as an axiom in some versions
of QFT [39], microcausality can be explicitly proved for some

given quantum fields. In particular, the proof that a noninter-
acting free Dirac field obeys microcausality is a well-known
textbook result [38,40]: if O(¢, x) and O'(¢', x) are two ob-
servables then

[0, x), 0@, x)] =0 (18)

for ¢2(t' — t)> — (x — x)*> < 0. The standard proof involves
writing an arbitrary observable as a bilinear combination of
field operators,

O, x) = &' (¢, x)o(t, x)d(t, x), (19)

where o(¢, x) is a matrix consisting of ¢ numbers [38,40]. The
commutator in Eq. (18) is then written in terms of the anti-
commutators [®7 (7', x'), d(z, x)]4. For free Dirac fields, these
anticommutators can be computed in closed form [38] and are
proved to vanish for spacelike separated intervals. Note that
the density operator given by Eq. (9) is the simplest bilinear
form involving field operators; this is the only observable we
will be interested in in this work.

A straightforward way to verify that microcausality holds
here for free Dirac fields is to compute the commutator (18) in
areference frame in which the events are simultaneous, which
is always possible (due to Lorentz invariance) for spacelike
separated points. In this reference frame the commutator for
the density becomes [p(¢, x), p(¢, ¥)] (with x # y) which can
be readily computed as

(bt x), pt, )] = T2, )([D(1, x), D2, 1D (2. y)
+ &, o, x), d@, y))
+ ([T, x), DT (1, D@, y)
+ &', I® (1, x), D, DD, x)
= &', 0)[D(, x), D', )] D@ y)
= T, DT, x), B, )] (¢, x)
=0(x#y) (20)

where the last line follows from Eq. (12) involving the equal-
time field anticommutators.

It turns out that Eq. (12) also holds for noninteracting
Dirac fields in the presence of a background potential. The
proof is given in Appendix A [see Egs. (A5)—-(A9)]. There-
fore, Eq. (20), the microcausality condition for the density
observable, also holds in the presence of a potential barrier.
We now hinge on this result to show that the density resulting
from tunneling cannot display a superluminal behavior.

B. Microcausality and wave-packet tunneling

We consider the following situation. An electron wave
packet is prepared, say to the left of a potential barrier, with
its density initially (# = 0) localized within a compact support
D defined by D = [x_, x; ] . Let us label x( to be the position
of the wave-packet maximum at # = 0, and x, being the point
closest to the barrier. The wave packet is launched towards the
barrier; we are interested in the part of the electron density
due to the wave packet’s dynamical evolution appearing to
the right of the barrier density, i.e., the part that has tunneled
through the barrier.
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Let x’ be a point located to the right of the barrier and
p(t', x') the density at that point. This density is given as per
Eq. (8) by the expectation value

py (@' x') = (x 1P, X)) 2n

To be clear p, represents the full electron density at (', x”)
when an initial wave packet is present; the origin of this
density can either be due to the wave packet or to the electron
and positron pairs created by the potential. Let us now write
the density at (¢, x') in a different setting, identical to the
preceding one except that there is no wave packet at + = 0.
This density is now given by the vacuum expectation value

pot', x") = (Ol xH]0)), (22)

and a nonvanishing density can only result from the pair-
production process.

Assume (¢',x") and (t =0, x;) are spacelike separated,
implying that (¢', x") is spacelike separated from any point
of D over which the wave packet is nonzero at ¢t = 0. Let us
define the function

C(t',x,0,x) = {x 12", x)p(0, ) x ).

correlating an observation of the density at a position x in-
side the initial wave packet followed by an observation of
the density at the spacelike separated point (¢, x"). From
Eqs. (7) and (10) we obtain, using BPB; 10) = 8(p — p)|I0Y

and d,d}; 10)) = 8(p — p)]|0).

xeD (23)

OO, x)x) = / dplg+(p)vy(x) + g (PI)w,y(0)]110)

= x(0,x)[|0). 24
Similarly we have

(1970, 2) = (Ollx " (0. x). (25)
We can now write Eq. (23) as

C(t', x50, x) = (xlp', x)pO, )| x )
=po(t', x)py(0,x), xeD (20

where we have used the definition (9), Egs. (24) and (25),
and the fact that both ®(¢, x’) and ®(¢', x’) anticommute
with CTD(O, x) given that the two space-time points (0, x) and
(t', x") are spacelike. We have also used Eqgs. (21) and (22),
writing

P2 (0,%) = (x 120, D)l x) = x"(0,0)x(0,x).  (27)

Equation (26) implies not only that the densities at the
two spacelike separated points are independent, but further
highlights that the density at (¢/, x’) is a vacuum expectation
value, that is, it does not depend at all on the wave packet (it
can nevertheless be nonzero due to pair production induced
by the potential). Equation (26) rules out the possibility of
superluminal tunneling because in that case there would be
some space-time points (¢’, x) outside the light cone for which
the density at that point would depend on the presence and
shape of the wave packet. It is noteworthy that the result
(27) does not depend on the shape, width, or height of the
background potential. This result holds of course for all types

of tunneling: for regular tunneling (characterized by an ex-
ponentially decreasing density inside the barrier) or for Klein
tunneling (oscillating particle density inside the barrier).

IV. ILLUSTRATIONS

A. Method

We illustrate here our QFT approach by carrying out nu-
merical computations for an electron wave packet, initially
localized on a compact support, launched towards a back-
ground potential having a rectangularlike shape. We will
focus on the transmitted part of the wave packet and con-
sider three typical cases encompassing both standard and
Klein tunneling. In the first illustration, we will consider
a “low” background potential displaying features similar to
the familiar nonrelativistic tunneling case, characterized by
a wave packet mostly reflected and transmitted with a very
small amplitude. In the second illustration, we will increase
the potential barrier, which remains below the supercriticial
threshold (2mc?) but is already sufficient in order to visualize
the nontrivial interplay between the transmitted wave packet
and the exponentially small electron density due to pair pro-
duction. In the third illustration, we will consider a backround
potential lying in the supercritical regime, with a wave-packet
energy giving rise to Klein tunneling: the density oscillates
inside the barrier and the wave packet is transmitted with a
very high amplitude.

To be specific, we will deal in all cases with an initial wave
packet given by the Dirac spinor

G(x) = |:cos8 (%)e"w, 0] [0 —x_) —0(x —x1)]
(28)

defined to be nonzero only over the compact support x € D (6
is the units step function). D is defined by D = [x_, x; ] with
Xt = xo = Dm /2 and is localized to the left of the barrier
(7D is the length of the support and xj is the position of
the maximum of the wave packet). The cos® function was
chosen for computational convenience; py is the initial mean
momentum. py and D are chosen such that the electron wave
packet moves towards the right as time evolves and the entire
wave packet remains below the potential threshold. By pro-
jecting G(x) over the free Dirac basis v,(x) and w,(x) we
obtain the coefficients g4 (p) of Eq. (7) defining the initial
second-quantized wave packet! which is in turn fed in Eq. (8)
in order to obtain the space-time resolved density p(f, x).

To this end we need to compute the unitary evolution
elements appearing in the density expressions [see Eqs. (BS)—
(B7)], such as Uy, () given by Eq. (4). The background
potential is set to be

Vx) = %{tanh[(x +L/2)/e] — tanh[(x — L/2)/€]}, (29)

where Vj and L are the barrier height and width, respectively,
and € a smoothness parameter. We then determine the evolu-
tion operator by solving the corresponding Dirac equation on a

'Recall that the first-quantized wave packet is obtained from the
Fock space state through x (¢, x) = OIS, ) x) [37,411.
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FIG. 1. Space-time resolved densities for the case 1 tunneling
wave packet. (a) The density of the transmitted wave packet is shown
(dotted blue) as it is exiting the barrier (t = 1.5 x 1072 a.u.) for a
comparatively low potential (V, = 0.5mc?) giving rise to standard
tunneling, with a negligible pair creation rate (the electron density
created by the potential is shown in red). The inset displays snap-
shots of the wave-packet dynamics at (b) r =0 and at (c) t = 1.5 x
1072 a.u [note the transmitted wave packet is hardly visible on that
scale in (c)]. The dotted vertical line in (b) represents the right edge of
the support D over which the initial wave packet is defined. The same
line in (a) and (c) represents the position of the light cone emanating
from this right edge at the time of the plot. The initial wave-packet
parameters in atomic units (a.u.) are xo = —120X, py = 100 a.u., and
D = 70A and for the barrier L = 4X and ¢ = 0.3A, where A = fi/mc
is the Compton wavelength of the electron.

discretized space-time grid using a split operator [42] method
(the evolution operator is split into a kinetic part propagated
in momentum space and a potential-dependent part solved in
position space). Note that in order to simplify the numerics we
have chosen ¢ = 0 as the time the barrier is raised and starts
radiating and also as the time the wave packet is launched
(although these two starting times are independent).

B. Standard tunneling
1. Case 1

Figure 1 shows the transmitted wave packet as well as the
electron density due to pair production for a comparatively
“low” potential (Vy = 0.5mc?). Snapshots of the density evo-
lution are given in the inset; leaving aside pair production, this
situation is a QFT account of the familiar Schrodinger-type
tunneling dynamics, where most of the incoming electron
amplitude is reflected and only a very small amplitude is
transmitted.

Note that the light cone (emanating from the space-time
point t = 0, x = x4 ) lies far ahead of the transmitted wave
packet. Indeed, although the wave packet is ultrarelativistic
(po = 100 a.u.) the mean velocity, roughly estimated as u =~
pe/+/ p? + m2c? = 0.59c, is still far from ¢. A computation of
the momentum distribution of the initial state shows that co-
efficients |g4(p)| with p > pg 4+ 20 a.u. become vanishingly
small and do not contribute to the wave packet, while any
contribution with p > 153.2 a.u. would go over the barrier and
would therefore not tunnel.

2. Case 2

Figure 2 shows the situation for a higher barrier
Vo = 1.77mc?) at t,=3x 1073 a.u. Pair production is still

0.06
0.04 “ //

002 |/ L

0 0.2 0.4
X (a.u.)

FIG. 2. Numerical computations corresponding to case 2, i.e.,
standard tunneling with a slightly radiating potential V, = 1.77mc>.
(a) The fotal density of the transmitted wave packet is shown in red.
The transmitted wave packet is barely visible as a bump in the total
density, although calculations show the wave-packet density (dotted
blue). The inset displays snapshots of the wave-packet dynamics at
(b)t =0 and at (c) t = 3 x 1073 [the time of the plot (a)]. The ini-
tial wave-packet parameters are (in a.u.) xo = —35A, po = 200, and
D = 16A and for the barrier L = 4A and ¢ = 0.3, where A = ii/mc.

small, as the total number of electrons due to pair produc-
tion is Nyac(2p)/2 = 0.31 [see Eq. (16)], but the transmitted
wave-packet amplitude is even smaller. As a result, the
transmitted wave packet appears as a small bump in the
overall density (red line in Fig. 2). This is confirmed by
applying Eq. (15) that allows for the computation of the
part of the density due to the wave packet (blue line in
Fig. 2). Note that some of the works [17-25] investigating
relativistic tunneling within the first-quantized approxima-
tion have computed numerical results for barrier heights in
cases in which QFT calculations show that the tiny ampli-
tude of the transmitted wave packet would be completely
overshadowed by the larger (or much larger if supercritical
barriers are considered) electron density produced by the
barrier.

Figure 2 also shows the light cone, emanating from the
right edge x of the initial wave-packet density distribution;
it can be seen that although the electron is in the relativistic
regime (the mean velocity of the initial distribution is 0.83c),
the transmitted wave packet remains well inside the light cone,
in line with the results of Sec. III.

C. Klein tunneling

Klein tunneling takes place for supercritical potentials
(Vo > 2mc?) and wave-packet energies for which (E — V) )2 >
m?c*; in this case the transmission of the electron wave packet
is mediated by pair production [31,43] giving rise to an os-
cillating density inside the barrier. These modulations in pair
production give rise to a transmitted wave packet with an un-
damped amplitude (as opposed to an exponentially decreasing
transmission in the case of regular tunneling). Relative to the
freely propagated wave packet, the transmitted Klein tunneled
one can be accelerated by the barrier (since the negative en-
ergy wave-packet components see a potential well [44]) but
never faster than light since our result (26) holds for any type
of potential barrier. A computation illustrating Klein tunneling
is given in Fig. 3, for Vo = 9mc?.
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FIG. 3. Numerical results for case 3 (Klein tunneling), with a su-
percritical barrier of height V; = 9mc?. (a) The electron wave-packet
density is shown (dotted blue) at t = 4.5 x 1073 a.u. well after the
transmitted wave packet (centered at x & 0.3 a.u.) has exited the
barrier (solid vertical lines). Note that the transmitted wave-packet
density is significantly larger than the one of the reflected wave
packet (centered at x = —0.19 a.u. and moving toward the left).
(b) The initial wave packet (light blue) is shown along with the
support D (dashed lines) and the barrier. (c) The plot (a) is zoomed
out in order to visualize the electron density due to pair production
(red line). The wave packet is not visible at this scale. The initial
wave-packet parameters in a.u. are xo = —40A, pp = 450 a.u., and
D = 16A and for the barrier L = 16X and ¢ = 0.3X with A = /i/mc.

V. DISCUSSION AND CONCLUSION

Although we have shown in Sec. III that according to
our space-time resolved relativistic QFT framework to spin-%
fermions there can be no superluminality in tunneling trans-
mission, it is often asserted that tunneling can be superluminal
or instantaneous. It is worthwhile briefly recalling on which
grounds such assertions have been made.

First, we must discard models based on nonrelativis-
tic frameworks, like the Schrodinger equation, for which
propagation is indeed instantaneous [45]. The same holds
for semiclassical approaches based on the Schrodinger
equation. Experimental results, in particular those involv-
ing the attoclock technique in strong field ionization
(see, e.g., [2,5,10,11]), have usually relied on such mod-
els when estimating tunneling times. Superluminality ap-
pears here as an artifact of employing a nonrelativistic
approach.

Second, there is the problem of defining traversal times
during the tunneling process. Indeed, there is no unambiguous
manner to define a tunneling time [15]. Various candidates
have been proposed (phase delays, dwell times, Larmor times,
time operators, weak values). These quantities not only lead
to conflicting results (predicting strikingly different traversal
times) but furthermore by construction they can yield su-
perluminal values, including when they are employed with
relativistic wave equations [17,19-21,23,25].

Third, some first-quantized works based on relativistic
wave equations have suggested superluminal transmission
based on the fact that the maximum of the density (or of the
current density) of the transmitted wave packet arrives earlier
than the maximum of the freely propagating one [18,23,24].
We note that in the three numerical cases given in Sec. IV
we can also observe the same phenomenon: as illustrated in
Fig. 4 the maximum of the tunneled wave packet has traveled,
at a given time, a longer distance than the maximum of an

3 10
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FIG. 4. (a)—(c) Display for each case considered, respectively, in
Figs. 1-3 the position of the transmitted peak along with the position
of the same initial wave packet that would have evolved freely. The
vertical dotted lines indicate the maxima of the transmitted peak and
the free wave packets (see text for details).

initially identical wave packet that would have evolved freely.
This is of course compatible with the causal dynamics implied
by Eq. (26). Indeed, having the maximum of a peak appearing
earlier at a given position does not imply faster or superlumi-
nal dynamics: the important point is that the “advanced” peak
still lies within the envelope of the free wave packet.

Note that even within first-quantized quantum mechanics
it would be incorrect to associate part of the quantum state
(the transmitted wave packet) with a single particle somehow
emerging faster from the barrier. Such a view would be clearly
incompatible with a QFT based framework. According to
QFT, a particle at each space-time point of a wave packet
is seen as a field excitation at that particular point, and the
field excitation at that point can only be related causally to the
field excitation at some other space-time point, in particular
to the field excitation at a different position in a given refer-
ence frame. Put differently, the causality implied by Eq. (26)
only imposes that the field excitation at the maximum of the
transmitted wave packet must lie within the forward light cone
emanating from D.

To sum up, we have investigated the tunneling wave-
packet dynamics for an electron within a relativistic QFT
framework in which the barrier is modeled as a background
field. We have shown that if the electron wave packet is
initially (# = 0) localized to the left of the barrier, the elec-
tron density at a spacelike separated point to the right of the
barrier does not depend on the presence or absence of the
wave packet at + = 0, thereby precluding any superluminal
effects related to tunneling. We have numerically computed
the space-time resolved electron density in typical cases of
tunneling with potentials below, close to or above the super-
critical value. We hope our results will contribute in clarifying
the models and approximations employed when accounting
for results involving traversal or detection times in tunnel-
ing related effects. We can expect similar results to hold
for other types of relativistic quantum fields known to obey
microcausality.
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APPENDIX A: FIELD OPERATORS: EQUAL-TIME
ANTICOMMUTATORS

We prove here the equal-time anticommutator given by
Eq. (12) with the field operator ®(¢,x) given in terms of
the annihilation operators of particles and antiparticles by
Eq. (10).

1. Field-free case

In the field-free case, the time evolution of the creation
and annihilation operators is trivial [b,(1) = e*'b,,, df (1) =
e Byt 3;, etc.] and the equal-time anticommutator reads as

[D7(x), D))+

=[ [ avbyoes+ [ apdpugme

V/‘dp'lsp,vp/(y)ef"Ef”t +/dpc?p,wp/(y)eiEl”’:| .

+
(AD)
Using the anticommutation relations
(6}, byl = [d]. dyls = 8(p— p)),
(6. dyle =[d}. byl = 8(p—p) (A2)
and
vV, (y) = PO,
w;(x)wp(y) = ¢ P (A3)
we obtain
[T (), D)+ = / dp(e?V ™ + P (Ad)

which leads to Eq. (12) of the paper.
J

2. Background potential

In the presence of a background potential, the equal-time
anticommutation relation

(67, ), b(t, )], = [/ dp(by(1)u,(x) +dy (Dwp(x)"),

/ dp(by(t)vy(x) + c?,,a)w,,(x))}
.

(A5)

involves the anticommutators of the type

[65, (1), by, ()] = [ f dp)(U;, wy bl + Uy dy),

|
b gt
/ dp’z (Uvﬁz Urh b/’,z + UUI’z W) dP/z )] + '
(A6)

Using Eq. (5) of the main text, one obtains

oy . % *
[bpl @), bpz (t )]+ - / dp,l (Uvm Up) U”l’z Up) + Uvm Wy, U

Uﬂzwp’l)
:/dpﬁ(<vpz|0|vp}><qu|UT|UPI)
+(v172|0|wp’1><wp’l 1U"v,,))

= (|00 |vp,) = (up,|vp,) = 8(p1 — p2),
(A7)

where in the last line we used the completeness relation
/dp'(lvpf)(vp/l + (wpy)(wyl) =1

and the orthonormality of the solutions of the free Dirac equa-
tion. Similarly, we find that

[}, 1), dp, ()], = 8(p1 = p2).

Plugging- these anticommutators into Eq. (AS5) leads to

(A8)

[D7(r,x), Dt )]y = / dp(ePO™) 4 Py (AQ)

and hence again to Eq. (12) of the paper.

APPENDIX B: DERIVATION OF THE DENSITY EXPRESSIONS

We derive here the expression of the particle density, given by Eq. (8) which becomes Eq. (14). Let us first compute the

expectation value of the operator written in Eq. (13), written as

pi(t,x) = (O] / dp(g. ()b, + g*(p)aip){ f / dpidpav}, (¥)vp, () / dp'(Uy ,, Ob}, + Uy, (0)dy)

f dp' (Us,, v, )by + Uy, (t)c?;;)} / dp(g+(p)b}, + g-(p)d})[0)

which expands to

(BI)

105 = (01 [+ [ darddidaxddsdpidpg’ @@L, o, Vs, OO0}, (610 000, dg 0] 33100

+ (ol / e / dq1dq,dqrdghd prdprg (9)8+(92)U;, o, (DU, ()0, ()Vp, (bg,dgid, by, 10)

+ ol / e / dq1dq,d>dgydprdprg’ (9)8+(92)U;, o, (DU, (10}, (¥)0p, (¥)bg, by by b 0)-

(B2)

1
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Using the anticommutation relations of creation and annihilation operators

(Olldy, iy d3, 10) = 841,802 = 841,810+
(0llby,dy, f?;f; 100 = 841028415
(ON1by, bl by b1, 10) = 84,85+ (B3)

we get

.
,Ol(fsx)=/d6]|g(6])|2/d61</ le,wq(t)vp(x)> (f vawq(t)vp(x))
+/dQ|g+(Q)|2/d4</ vawq(t)vp(x)> (/ vawq(t)vp(x)>

;
+ ( / dpdqg+(p)Uv,,v,,vp(X)> < / dpdqg+(p)Uu,,qup(x)>

;
- ( / dpdqg-(p)vaqup(x)) < / dpdqg—(p)le,wé,vp(x)) (B4)

Using the normalization of the initial QFT state yields

¥
Pl(f,X)Z/d61</ Uv,,wq(t)vp(x)> </ Uu,,wq(t)vp(x))

;
+ ( / dpdqg+(p)Uv,,v(,(t)vp(x)> < / dpdqg+(p)Uv,,Uq(t)vp(x)>

+
- (/ dpdqg(p)Uv,,w,,(t)vp(X)> </ dpdqg(p)Uv,,w,,(t)Up(x)>- (BS)

The first line in the expression of p (¢, x) represents the electron density created by the background potential due to the
vacuum excitation while the second line represents the density corresponding to the incoming particle. The third line represents
the modulation in the number density of the created particles due to the incident particle wave packet. The terms p, (¢, x) and
p3(t, x) are computed similarly, yielding

+
pat, x) = /dp</ quw,,Uq(t)wp(x)> (/ quw,,Uq(t)wp(x))

T
+ <f dpdq g—(Q)Uwaq(t)wp(x)> <f dpdq g—(‘Z)Uw,,wq(t)wp(x))

+
- (/ dpdqur(Q)Uwqw,,(t)wp(x)) </ dpdqur(q)Uquq(t)wp(x)) (B6)

and
ps(t,x)=2Re(/ dpdqg”(q) wpwq(t)g+(q)Uu,,uqwZ(x)vp(x)>

+ 2Re( / dpdqg (U}, ()8 (@)Us,u, w;oc)v,,(x)), (B7)

where p;(t, x) is the counterpart of p; (¢, x) for the positron density while p3(¢, x) involves cross terms between positive and
negative energy modes of the initial wave packet. p;(¢, x) cancels the infinite tails of p; (¢, x) and p, (¢, x). When integrated over
the entire space, however, the contribution of this term vanishes, ensuring that p obeys

/dxp(t,X)=/dx,01(t,x)+/pr2(t,X), (B8)
which is the sum of the particle and antiparticle numbers.
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