
Relativistic spin-0 particle in a box: Bound states, wave packets, and the
disappearance of the Klein paradox
M. Alkhateeb and A. Matzkin

Citation: American Journal of Physics 90, 297 (2022); doi: 10.1119/10.0009408
View online: https://doi.org/10.1119/10.0009408
View Table of Contents: https://aapt.scitation.org/toc/ajp/90/4
Published by the American Association of Physics Teachers

https://images.scitation.org/redirect.spark?MID=176720&plid=1225648&setID=405125&channelID=0&CID=414014&banID=519951233&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a751578570f9a19485c32a00914fe23468df85a9&location=
https://aapt.scitation.org/author/Alkhateeb%2C+M
https://aapt.scitation.org/author/Matzkin%2C+A
/loi/ajp
https://doi.org/10.1119/10.0009408
https://aapt.scitation.org/toc/ajp/90/4
https://aapt.scitation.org/publisher/


ADVANCED TOPICS SECTION

The Advanced Topics Section is meant for articles that deal with physics more advanced than is typical of

regular articles in AJP. Though advanced, these articles have been judged to give clear presentations of

material useful to a segment of AJP readers.

Relativistic spin-0 particle in a box: Bound states, wave packets,
and the disappearance of the Klein paradox

M. Alkhateeba) and A. Matzkinb)

Laboratoire de Physique Th�eorique et Mod�elisation, CNRS Unit�e 8089, CY Cergy Paris Universit�e,
95302 Cergy-Pontoise Cedex, France

(Received 19 March 2021; accepted 11 January 2022)

The “particle-in-a-box” problem is investigated for a relativistic particle obeying the Klein–Gordon

equation. To find the bound states, the standard methods known from elementary non-relativistic

quantum mechanics can only be employed for “shallow” wells. For deeper wells, when the

confining potentials become supercritical, we show that a method based on a scattering expansion

accounts for Klein tunneling (undamped propagation outside the well) and the Klein paradox

(charge density increase inside the well). We will see that in the infinite well limit, the wave

function outside the well vanishes, and Klein tunneling is suppressed: Quantization is, thus,

recovered, similar to the non-relativistic particle in a box. In addition, we show how wave packets

can be constructed semi-analytically from the scattering expansion, accounting for the dynamics of

Klein tunneling in a physically intuitive way. # 2022 Published under an exclusive license by American
Association of Physics Teachers.

https://doi.org/10.1119/10.0009408

I. INTRODUCTION

In non-relativistic quantum mechanics, the “particle in a
box,” i.e., when the square well potential is extended to infi-
nite depth, is the simplest problem considered in textbooks,
usually in order to introduce the quantization of energy levels.
In contrast, in the first quantized relativistic quantum mechan-
ics (RQM), the situation is not so simple, and the problem is
understandably hardly treated in RQM textbooks. The reason
is that when the potential reaches a sufficiently high value, the
energy gap 2 mc2 separating the positive energy solutions
from the negative energy ones is crossed (m is the rest mass
of the particle). For such potentials, known as “supercritical
potentials,” the wave function does not vanish outside the
well but propagates undamped in the high potential region, a
phenomenon known as Klein tunneling.1,2 Indeed, RQM—
although remaining a single-particle formalism—intrinsically
describes a generic quantum state as a superposition of posi-
tive energy solutions (related to particles) and negative energy
solutions (related to antiparticles).

Therefore, for relativistic particles, the particle-in-a-box prob-
lem is not suited to introductory courses. For this reason, only
finite, non-supercritical rectangular potential wells are usually
presented in RQM classes (see, for example, Sec. 9.1 of Ref. 3
for the Dirac equation describing fermions in a square well or
Sec. 1.11 of the textbook4 for the Klein–Gordon equation, spin-
0 bosons, in a radial square well). For a Dirac particle in an infi-
nite well, a “bag” model was developed by not introducing an
external potential, but assuming a variable mass taken to be
constant and finite in a box, but infinite outside;5,6 in this way,
Klein tunneling is suppressed, and solutions similar to those
known in the non-relativistic case can be obtained. This method
was recently extended to the Klein–Gordon equation.7

In this work, we show that for the Klein–Gordon equation
in a one-dimensional box, it is not necessary to change the
mass to infinity outside the well in order to confine the parti-
cle. To do so, we shall consider multiple scattering expansions
inside the well. Such expansions were recently employed to
investigate relativistic dynamics across supercritical barriers.8

We will see below that Klein tunneling, which is prominent
for a supercritical potential well sufficiently higher than the
particle energy placed inside, disappears as the well’s depth V
is increased. In the infinite-well limit, Klein tunneling is sup-
pressed, and the walls of the well become perfectly reflective,
as in the non-relativistic case.

The relativistic bosonic particle in a box is an interesting
problem because it yields a simple understanding, in the first
quantized framework, of the charge creation property that is
built into the Klein–Gordon equation, extending tools (scatter-
ing solutions to simple potentials) usually encountered in
introductory non-relativistic classes. Moreover, as we will
show in this paper, time-dependent wave packets can be easily
built from the scattering solutions. This is important because
wave packets allow us to follow in an intuitive way the
dynamics of charge creation in a relativistic setting. The phys-
ics of charge creation in the presence of supercritical poten-
tials is much more transparent for the Klein–Gordon equation
than for the Dirac equation, which needs to rely in the first
quantized formulation on hole theory (see Ref. 9 for a Dirac
wave packet approach for scattering on a supercritical step).

The paper is organized as follows. We first recall in Sec.
II the Klein–Gordon equation and address the finite square
well problem, obtaining the bound-state solutions. In Sec.
III, we introduce the method of the multiple scattering
expansion (MSE) in order to calculate the wave function
inside and outside a square well. We will then see (Sec. IV)
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that the wave function outside the well vanishes as the well
depth tends to infinity. The fixed energy solutions are similar
to the well-known Schr€odinger ones. Finally, we show (Sec.
V) how the MSE can be used to construct simple wave pack-
ets in a semi-analytical form. We will give illustrations
showing the time evolution of a Gaussian initially inside
square wells of different depths.

II. KLEIN–GORDON SOLUTIONS FOR A PARTICLE

IN A SQUARE WELL

A. The Klein–Gordon equation

The wave function Wðt; xÞ describing relativistic spin-0
particles is well-known to be described by the Klein–Gordon
(KG) equation.3,4 In one spatial dimension and in the pres-
ence of an electrostatic potential energy V(x), the KG equa-
tion is expressed in the canonical form and in the minimal
coupling scheme as

i�h@t � VðxÞ½ �2Wðt; xÞ ¼ ðc2p̂2 þ m2c4ÞWðt; xÞ; (1)

where c is the speed of light in vacuum, p̂ ¼ �i�h@x is the
momentum operator, and �h is the reduced Planck constant.
The charge density qðt; xÞ, which can take positive or nega-
tive values associated with particles and anti-particles, is
given by (see, e.g., Refs. 3 and 4)

qðt; xÞ ¼ i�h=2mc2
� �

W�ðt; xÞ@tWðt; xÞ�Wðt; xÞ@tW
�ðt; xÞ½ �

� VðxÞ=mc2
� �

W�ðt; xÞWðt; xÞ: (2)

A generic state may contain both particle and anti-particle
contributions, corresponding to positive and negative ener-
gies, respectively [see Eq. (6) below]. The scalar product of
two wave functions WIðt; xÞ and WIIðt; xÞ is defined as

hWIðt; xÞjWIIðt; xÞi

¼
ð

dx
n

i�h=2mc2
� �

� W�I ðt; xÞ@tWIIðt; xÞ � @tW
�
I ðt; xÞWIIðt; xÞ

� �
� VðxÞ=mc2
� �

W�I ðt; xÞWIIðt; xÞ
� �o

: (3)

B. The finite square well

1. Plane-wave solutions

Before getting to the problem of a particle in an infinite
well, let us address first a particle inside a square well of
finite depth. A square well in one dimension can be
described by the potential,

VðxÞ ¼ V0hð�xÞhðx� LÞ; (4)

where hðxÞ is the Heaviside step function, V0 is the depth of
the well, and L is its width. As illustrated in Fig. 1, we con-
sider the three regions indicated by j¼ 1, 2, and 3. In each of
the three regions, the KG equation (1) accepts plane wave
solutions of the form:

Wjðt; xÞ ¼ ðAje
ipjx=�h þ Bje

�ipjx=�hÞe�iEt=�h; (5)

where we set E to be the energy inside the well (region 2).
By inserting those solutions in Eq. (1), one obtains E in terms
of the momentum inside the well,

EðpÞ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þ m2c4

p
; (6)

where, for convenience, we put p ¼ p2. These are the plane
wave solutions in free space known from RQM textbooks.3,4

A plane wave with E(p)> 0 represents a particle, whereas a
solution with E(p)< 0 represents an antiparticle. We will be
considering situations in which a particle is placed inside the
well, so we will take positive plane-wave solutions in region
2. Outside the well (in regions 1 and 3), it is straightforward
to see that Wjðt; xÞ is a solution provided p1;3 ¼ qðpÞ, where

qðpÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðpÞ � V0Þ2 � m2c4

q
=c: (7)

Note that in the limit of an infinite well (V0 � mc2), q(p)
is always real, so that typical solutions Wjðt; xÞ in regions
j¼ 1 and 3 are oscillating. Note also that a classical parti-
cle with energy E would have inside the well a velocity
v ¼ pc2=E (so p and v have the same sign). Hence, for the
region 2 solutions W2ðt; xÞ; when p is positive, eipx=�h corre-
sponds to a particle moving to the right (and e�ipx=�h to the
left). However, outside the well, we have

v0 ¼ qc2=ðE� V0Þ; (8)

so that for large V0, the velocity and the momentum of a
classical particle have opposite signs.10,11 So a plane wave
eiqx=�h with q> 0 now corresponds to a particle moving to the
left. This can also be seen by rewriting the plane waves in
terms of the energy outside the well, say exp iðp1x� �EtÞ=�h.
This is tantamount to taking the potential to be 0 in region 1
and �V ¼ �V0 in region 2 (with V0 > 0). Since we require
�E � �V to be positive and smaller than V0 (in order to repre-
sent a particle inside the well), we must have �E < 0. In this
case, a given point x described by the plane wave
exp iðp1x� �EtÞ=�h travels to the right if p1 is negative.
For instance, the position of an antinode changes by
Dx ¼ Dt �E=p1 in the time interval Dt, so if �E < 0, the sign of
Dx will be opposite to the sign of p1.26

2. Bound states

Bound states are obtained when the solutions outside
the well are exponentially decaying. This happens when q(p)
has imaginary values, that is for potentials satisfying

Fig. 1. A square well with the three regions j considered in the text. The

arrows depict the multiple scattering expansion for a wave initially traveling

toward the right edge of the well (see Sec. III for details).
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E� mc2 < V0 < Eþ mc2. Note that for a particle at rest in
the well frame, E � mc2, and the condition for the existence
of bound states becomes V0 < 2 mc2.

In order to find the bound state solutions, we employ the
same method used in elementary quantum mechanics for the
Schr€odinger equation square well. We first set the boundary
conditions on the wave functions (5) accounting for no
particles incident from the left in region 1 nor from the right
in region 3, yielding

A1 ¼ B3 ¼ 0: (9)

We then require the continuity of the wave functions Wjðt; xÞ
of Eq. (5) and their spatial derivatives at the potential discon-
tinuity points x¼ 0 and x¼L:

W1ðt; 0Þ ¼ W2ðt; 0Þ; W2ðt; LÞ ¼ W3ðt; LÞ;

W01ðt; 0Þ ¼ W02ðt; 0Þ; W02ðt; LÞ ¼ W03ðt; LÞ: (10)

This gives

B1 ¼ A2 þ B2; A2eipL þ B2e�ipL ¼ A3eiqL;

�qB1 ¼ pðA2 � B2Þ; pðA2eipL � B2e�ipLÞ ¼ qA3eiqL:

(11)

By eliminating A3 and B1, we obtain a system of two equa-
tions in A2 and B2,

ðqþ pÞA2 þ ðq� pÞB2 ¼ 0;

ðq� pÞA2eipL þ ðqþ pÞB2e�ipL ¼ 0; (12)

where q is given by Eq. (7). This system admits nontrivial
solutions when the determinant of the system (12) vanishes,

ðqþ pÞ2e�ipL � ðq� pÞ2eipL ¼ 0: (13)

Nontrivial solutions exist only if q is an imaginary number
q ¼ iqr, where qr 2 R. Solving Eq. (13) for q gives the two
solutions:

qra ¼ p tan ðpL=2Þ;
qrb ¼ �pcotðpL=2Þ: (14)

As is familiar for the Schr€odinger square well,12 the bound state
energies are obtained from the intersections of the curves

qra;bðpÞ with the curve qrðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 � ðEðpÞ � VÞ2

q
=c. For

simplicity, we use the dimensionless variables

Q ¼ qL=ð2�hÞ;
Qa;b ¼ qr;a;bL=ð2�hÞ;
P ¼ pL=ð2�hÞ: (15)

Figure 2 gives an illustration for a particle confined in a well
of width L¼ 10 (we employ natural units c ¼ �h ¼ e0 ¼ 1 as
well as m¼ 1; the conversion to SI units depends on the par-
ticle’s mass, e.g., for a pion meson pþ, the mass is
139.57 MeV/c2). The energies are inferred from the values of
P at the intersection points.

III. MULTIPLE SCATTERING EXPANSION

FOR SUPERCRITICAL WELLS

A. Principle

We have just seen that the method depending on matching
conditions jointly at x¼ 0 and x¼ L as per Eq. (10) only
works if q(p) is imaginary, since, otherwise, Eq. (13) has no
solutions. However, as is seen directly from Eq. (7), for suffi-
ciently large V0, q(p) is real. For this case, we use a different
method in which the wave function is seen as resulting from
a multiple scattering process on the well’s edges. The well is
actually considered as being made out of two potential steps,
and the matching conditions apply separately at each step.

More precisely, consider the following step potentials: a
left step, VlðxÞ ¼ V0hð�xÞ, and a right step, VrðxÞ
¼ V0hðx� LÞ. Let us focus on the wave function inside the
well, whose general form is given by W2ðt; xÞ [Eq. (5)]; the
boundary conditions are those given by Eq. (9), meaning no
waves are incoming toward the well. Let us first consider a
plane wave aeipx=�h with amplitude a propagating inside the
well toward the right (p> 0; see Fig. 1). On hitting the right
step, this wave will be partly reflected and partly transmitted to
region 3. The part reflected inside the well will now travel
toward the left, until it hits the left step, at which point, it suf-
fers another reflection and transmission. This multiple scatter-
ing process continues as the reflected wave inside the well
travels toward the right edge. Similarly, we can consider a
plane wave be�ipx=�h of amplitude b initially inside the well but
propagating to the left. This wave hits the left step first and
then scatters multiple times off the two edges similarly.
Multiple scattering expansions, generally employed when sev-
eral scatterers are involved, are also often used in potential
scattering problems in order to gain insight in the buildup of
solutions involving many reflections (see Ref. 13 for an appli-
cation to plane-wave scattering on a rectangular barrier).

B. Determination of the amplitudes

The coefficients giving the scattering amplitudes due to reflec-
tion and transmission at the two steps will be denoted as rl;r and
tl;r, respectively, where l and r indicate the left and right steps,
respectively. In order to calculate those coefficients, one has
to solve the step problem separately for each of the two steps.

The continuity of the plane wave eipx=�h and its first spatial
derivative at the right step (x¼L) yield the following two
equations:

eipL=�h þ rre
�ipL=�h ¼ tre

iqL=�h;

eipL=�h � rre
�ipL=�h ¼ q=pð Þtre

iqL=�h (16)

giving

Fig. 2. The bound state energies of a particle of mass m¼ 1 (L¼ 10, natural

units are used, see text) are found from the values of P ¼ pL=ð2�hÞ at the

intersections of the curves defined in Eq. (15).
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tr ¼ 2p= pþ qð Þeiðp�qÞL=�h;

rr ¼ p� qð Þ= pþ qð Þei2pL=�h: (17)

Similarly, in order to calculate the coefficients of reflec-
tion and transmission suffered by a plane wave propagating
inside the well toward the left step, one uses the continuity
of the plane wave and its space derivative at x¼ 0 to obtain:

tl ¼ 2p= pþ qð Þ; rl ¼ p� qð Þ= pþ qð Þ: (18)

After the plane wave reflects for the first time either on the
right or left steps, it will undergo a certain number of reflec-
tions before being finally transmitted outside the well. Let
aeipx=�h be the initial wave inside the well moving to the right
(recall B3 ¼ 0). After the first cycle of reflections from both
steps, the amplitude of the same plane wave becomes arrrl;
and aðrrrlÞn after n cycles of successive reflections. This pro-
cess is illustrated in Fig. 1. In addition, an initial plane wave
moving to the left (recall A1 ¼ 0), be�ipx=�h, contributes, after
reflecting on the left step, to the wave moving to the right,
first with amplitude brl and then multiplied by ðrrrlÞ after
each cycle of reflections. The amplitude of the plane wave
eipx=�h in region 2 is the sum of these contributions, namely,
ðaþ brlÞ

P
n ðrrrlÞn. We can identify this term with the

amplitude A2 in region 2, Eq. (5) (recall we have set p � p2).
Along the same lines, we identify B2 in Eq. (5) with the

amplitude of the term e�ipx=�h inside the well resulting from
multiple scattering as well as B1 in region 1 and A3 in region
3. The result is

B1 ¼ tlðarr þ bÞ
X1
n¼0

ðrrrlÞn;

A2 ¼ ðaþ brlÞ
X1
n¼0

ðrrrlÞn;

B2 ¼ ðarr þ bÞ
X1
n¼0

ðrrrlÞn;

A3 ¼ trðaþ brlÞ
X1
n¼0

ðrrrlÞn;

A1 ¼ B3 ¼ 0: (19)

The behavior of the series
P

n	0 ðrlrrÞn is interesting as it
is related to charge creation. The term

jrlrrj ¼ j p� qð Þ= pþ qð Þj2 (20)

can, indeed, be greater or smaller than 1, corresponding,
respectively, to a divergent or convergent series. As follows
from Eq. (8), for a supercritical potential ðE� V0Þ < 0, so
the direction of the motion is opposite to the direction of the
momentum. Hence, given the boundary conditions A1 ¼ B3

¼ 0, we see that we must set q< 0 in order to represent out-
going waves in regions 1 and 3 (moving in the negative and
positive directions, respectively). We conclude that for
supercritical wells, jrlrrj > 1 and the amplitudes (19)
diverge. The physical meaning of a diverging series is best
understood in a time-dependent picture, as we will see in
Sec. V. The nth term of the series will be seen to correspond
to the nth time the wave packet hits one of the edges, each
hit increasing the wave packet’s amplitude.

Note that for q< 0, both jrlj > 1 and jrrj > 1. This is an
illustration of bosonic superradiance at a supercritical potential

step: For a given plane-wave incoming on the potential step
(here the left or right steps), the reflected current is higher than
the incoming one.14,15 This phenomenon, that at first sight
appears surprising, became known as the “Klein paradox.”

IV. THE INFINITE WELL

As we have just seen, one of the signatures of the
Klein–Gordon supercritical well—a feature unknown in non-
relativistic wells—is that the amplitudes outside the well, B1

and A3, are not only non-zero, but grow with time. Each time
that a particle hits an edge of the well, the reflected wave has
a higher amplitude, but since the total charge is conserved,
antiparticles are transmitted in zones 1 and 3.

However, it can be seen that as the depth of the supercritical
well increases, the amplitudes of the wave function transmit-
ted outside the well decrease. Indeed, the step transmission
coefficients tr and tl given by Eqs. (17) and (18) are propor-
tional to 1=V0. Hence, in the limit of infinite potentials,
V0 !1, the transmission vanishes. We also see from
Eqs. (17) and (18) that rl !�1; rr !�e2ipL=�h, and

P
n ðrrrlÞn

is bounded and oscillates. Hence, from Eq. (19), in this limit,
A3 ! 0 and B1 ! 0. This implies wðx ¼ 0Þ ¼ wðx ¼ LÞ ¼ 0,
and these conditions can only be obeyed provided

p ¼ kp�h=L; (21)

where k is an integer; we also then have B2 ¼ �A2. The
unnormalized wave function inside the well takes the form:

W2ðt; xÞ ¼ 2iA2 sin
kp
L

x

� �
e�i Ekt=�hð Þ; (22)

while the amplitudes outside the well obey B1 ! 0 and
A3 ! 0 (although for p ¼ kp�h=L;

P
n ðrrrlÞn diverges). This

can be seen by remarking that when Eq. (21) holds, rrrl ¼ 1;
and B1 can be parsed as

B1 ¼ tlðarr þ bÞ þ tlðarr þ bÞ þ 
 
 
 : (23)

Since tl ! 0 as V0 !1; the wave function in region 1 van-
ishes in this limit. A similar argument holds for A3.

Note, however, that A2 (and B2Þ become formally infinite,
given that the series

Pnmax

n e2inpL=�h ¼ nmax þ 1 is unbounded
when Eq. (21) holds as nmax !1. Since the total charge must
be conserved (and cannot change each time nmax increases),
the wave function inside the well should be renormalized to
the total charge. Unit charge normalization corresponds to

Wk
2ðt; xÞ ¼

ffiffiffi
2

L

r
sin

kp
L

x

� �
e�i Ekt=�hð Þ (24)

with [Eqs. (6) and (21)]

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp�h=Lð Þ2c2 þ m2c4

q
: (25)

In the non-relativistic limit, the kinetic energy is small rela-
tive to the rest mass, yielding

E � ENR
k ¼ mc2 þ k2p2�h2=2mL2 (26)

recovering the non-relativistic particle in a box energy (up
to the rest mass energy term). Equation (25) is the same
result obtained recently by Alberto et al.,7 who employed a
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bag-model (taking the mass to be infinite mass in regions 1
and 3) in order to ensure the suppression of Klein tunneling.

In a real situation, neither V0 nor the number of reflections
(corresponding to the time spent inside the well) can be infi-
nite. Given a finite value of V0; a particle placed inside the
well is represented by a wave packet that will start leaking
after a certain number of internal reflections, as we discuss
in Sec. V. This shows that although quantization for infi-
nitely deep wells looks similar to the corresponding non-
relativistic well, the mechanism is very different, as in the
latter case, we have exponentially decreasing solutions that
vanish immediately outside the well, whereas in the present
case, we have oscillating solutions that are suppressed.

Note that although quantization only appears in the limit
V0 !1, for high but finite values of V0, resonant Klein
tunneling (e.g., Ref. 16) takes place: The amplitudes (19)
peak for energy values around Ek given by Eq. (25). This can
be seen by plotting the amplitudes as a function of E or p.
An illustration is given in Fig. 3, showing B1ðpÞ and A2ðpÞ
for different values of V0. It can be seen that the amplitudes
are peaked around the quantized p values [Eq. (21)] while
concomitantly decreasing as the well depth increases.

For completeness, let us mention that the square well bound
states of Sec. II B 2 can also be recovered employing the
MSE. Indeed, for bound states, the wave function must be a
standing wave. Given the symmetry of the problem, the wave
function is either symmetric or anti-symmetric with respect to
the center of the well, x ¼ L=2. In the symmetric case, the
standing wave is, thus, given by C cos ½pðx� L=2Þ=�hÞ�.
Matching this form to W2ðxÞ ¼ A2eipx=�h þ B2e�ipx=�h leads to

A2=B2 ¼ e�ipL=�h: (27)

The anti-symmetric standing wave is of the form
C sin ½pðx� L=2Þ=�hÞ�, which is equated to W2ðxÞ to obtain
A2=B2 ¼ �e�ipL=�h. Replacing A2 and B2 by their respective
MSE expansion given by Eqs. (19), therefore, leads to

aþ brlð Þ= arr þ bð Þ ¼ 6e�ipL=�h: (28)

Using rr ¼ rle
2ipL=�h from Eqs. (17) and (18) and keeping in

mind that a and b are arbitrary complex numbers, Eq. (28)
becomes

rl ¼ 6e�ipL: (29)

Now, using rl ¼ ðp� qÞ=ðpþ qÞ from Eq. (18) and squaring
both sides of this equation lead to Eq. (13) and, hence, to the
quantization conditions obtained above in Sec. II B 2.

Note that these bound states are obtained when the solu-
tions outside the well are exponentially decaying. In this
case, the series

P
n ðrrrlÞn is bounded and oscillates, whereas

in the supercritical regime, this series was seen to be expo-
nentially divergent. When the MSE diverges, applying joint
matching conditions of the type given by Eq. (10) is incor-
rect and leads to unphysical results (for instance, in the scat-
tering of Klein–Gordon particles on a barrier, doing so leads
to acausal wave packets and superluminal barrier traversal
times17,18).

V. WAVE PACKET DYNAMICS

A. Wave packet construction

Since the solutions Wjðt; xÞ of Eq. (5), with the amplitudes
given by Eq. (19), obey the Klein Gordon equation inside
and outside the well, we can build a wave packet by super-
posing plane waves of different momenta p. We will follow
the evolution of an initial Gaussian-like wave function local-
ized at the center of the box and launched toward the right
edge (that is with a mean momentum p0 > 0). We will con-
sider two instances of supercritical wells: one with a
“moderate” depth displaying Klein tunneling and the other
with a larger depth in which Klein tunneling is suppressed.

Let us consider an initial wave packet

Gð0; xÞ ¼
ð

dpgðpÞðA2ðpÞeipx=�h þ B2ðpÞe�ipx=�hÞ (30)

with

gðpÞ ¼ e�ðp�p0Þ2=4r2
p e�ipx0 : (31)

We will choose x0 to be the center of the well and take p0 as
well as all the momenta in the integration range in Eq. (30)
positive. We, therefore, set b ¼ 0 in the amplitudes (19) and
choose a in accordance with unit normalization for the wave
packet. r2

p fixes the width of the wave packet in momentum
space (ideally narrow, though its spread in position space
should remain small relative to L). Finally, the sum

P
ðrrrlÞn

is taken from n¼ 0 to nmax, where the choice of nmax depends
on the values of t for which the wave packet dynamics will
be computed. Indeed, each term ðrrrlÞn translates the wave
packet by a distance 2nL, so this term will only come
into play at times of the order of t � 2nL=v, where
v � p0c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2m2 þ p2

0

p
is the wave packet mean velocity.

Fig. 3. The amplitudes jB1j and jA2j calculated using the MSE relations Eq. (19) with nmax ¼ 10, a ¼ 1, and b ¼ 0 are shown for different values of the super-

critical well depth V0 ¼ 5; 20; and 50 (p is given in units of 1=L and c ¼ �h ¼ 1). Inside the well, the resonant structure of jA2j is not much affected as V0

changes (the curves nearly superpose), but the amplitude jB1j outside the well, indicative of Klein tunneling, is seen to decrease as V0 increases.

301 Am. J. Phys., Vol. 90, No. 4, April 2022 M. Alkhateeb and A. Matzkin 301



Note that in position space, G(0, x) is essentially a Gaussian

proportional to e�ðx�x0Þ2=4r2
x eip0x.27

Following Eq. (5), the wave packet in each region is given
by

Gjðt; xÞ ¼
ð

dpgðpÞWjðt; pÞ (32)

where the amplitudes AjðpÞ and BjðpÞ are obtained from the
MSE. For supercritical potential wells, we have to take q< 0
in the MSE amplitudes. The charge qðt; xÞ associated with
the wave packet in each region is computed from Gjðt; xÞ by
means of Eq. (2).

B. Illustrations

We show in Figs. 4 and 6 the time evolution of the charge
corresponding to the initial wave packet (30) in supercritical
wells. The only difference between both figures is the well
depth, V0 ¼ 5 mc2 in Fig. 4 and V0 ¼ 50 mc2 in Fig. 6. The
calculations are semi-analytical in the sense that the integra-
tion in Eq. (32) must be done numerically for each space-
time point (t, x).

For V0 ¼ 5 mc2, Klein tunneling is prominent: The positive
charged wave packet moves toward the right, and upon reach-
ing the right edge, the supercritical potential produces negative
charge outside the well (corresponding to antiparticles) and

positive charge inside. The reflected charge is higher than
the incoming charge—this is a time-dependent version of
Klein’s paradox—but the total charge is conserved. The
reflected wave packet then reaches the left edge of the well,
resulting in a transmitted negatively charged wave packet
and a reflected wave packet with a higher positive charge,
now moving to the right inside the well. We have also dis-
played (Fig. 5) results obtained from solving numerically
the KGE equation through a finite difference scheme. The
numerical method employed is described elsewhere8—here
its use is aimed at showing the accuracy of our MSE based
wave packet approach.

For a higher confining potential (Fig. 6), transmission out-
side the well is considerably reduced: The wave packet is
essentially reflected inside the well. This is due to the fact,
noted above, that the plane-wave transmission amplitudes
from which the wave packet is built are proportional to
1=V0. Hence in the limit V0 !1, Klein tunneling becomes
negligible. We recover a behavior similar to the one familiar
for the non-relativistic infinite well wave packets.19

VI. DISCUSSION AND CONCLUSION

In this work, we studied a Klein–Gordon particle in a deep
(supercritical) square well. We have seen that the method
based on connecting the wave function at both potential dis-
continuities, employed for non-relativistic square wells, only

Fig. 4. The charge qðt; xÞ associated with the wave packet given by Eq. (32) for a particle of unit mass is shown for different times as indicated within each panel.

The parameters are the following: L¼ 400 and V0 ¼ 5 mc2 for the well, x0 ¼ 200; p0 ¼ 1; and rp ¼ 0:02 for the initial state, a ¼ 1, b ¼ 0, and nmax ¼ 10 for the

MSE series (natural units c ¼ �h ¼ 1 are used). The change in the vertical scale is due to charge creation (no adjustment or renormalization has been made).
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works for non-supercritical wells. For supercritical wells, a
divergent multiple scattering expansion was introduced to
obtain the solutions. This expansion accounts for Klein
tunneling and for the Klein paradox. In the limit of an infi-
nitely deep well, the amplitudes obtained from the expansion
show that Klein tunneling is suppressed. The quantized parti-
cle in a box similar to the non-relativistic one is then recov-
ered, although contrary to the non-relativistic case, this
happens by oscillating Klein tunneling solutions becoming
negligible (rather than through exponentially decaying wave
functions becoming negligible outside the well). We have
also seen how these amplitudes can be used to build time-
dependent wave packets.

The methods employed here to study the square well for a
relativistic spin-0 particle can be understood readily from the
knowledge of non-relativistic quantum mechanics. These
methods have allowed us to introduce in a simple way spe-
cific relativistic trait, such as charge creation (that in the
Klein–Gordon case already appears at the first quantized
level) or Klein tunneling and the Klein paradox. In particu-
lar, the wave packet dynamics give an intuitive understand-
ing of these phenomena that are not very well tackled in a
stationary approach.

The framework employed in this paper—that of relativis-
tic quantum mechanics (RQM)—lies halfway between stan-
dard quantum mechanics and the relativistic quantum field

Fig. 6. Same as Fig. 4 but for a well of depth V0 ¼ 50 mc2. Klein tunneling is suppressed relative to Fig. 4.

Fig. 5. The charge density for the system shown in Fig. 4 as given by numerical computations from a finite difference scheme (only the results at t¼ 800 and

t¼ 1000 are shown).

303 Am. J. Phys., Vol. 90, No. 4, April 2022 M. Alkhateeb and A. Matzkin 303



theory (QFT). Indeed, RQM describes formally a single par-
ticle wave function with a spacetime varying charge, while
the physically correct account afforded by QFT involves cre-
ation and annihilation of particles and their respective anti-
particles. The correspondence between the RQM and QFT
descriptions for a boson in the presence of a background
supercritical potential has been worked out in detail20 for the
case of the step potential discussed in Sec. III A. According
to QFT, the potential spontaneously produces particle/
antiparticle pairs, a feature that is absent from the RQM
description. For a Klein–Gordon particle, the RQM wave
function correctly represents the incoming boson as well as
the QFT enhancement to the pair production process; the
enhancement results from the interaction between the incom-
ing boson and the supercritical potential (this is the charge
increase visible in Fig. 4). This correspondence can be estab-
lished in a time-independent approach,14,21 or more conclu-
sively by employing space-time resolved QFT
calculations.15 From an experimental viewpoint, direct pair
production from a supercritical background field has
remained elusive up until now, though the current develop-
ment of strong laser facilities could lead to an experimental
observation (for the fermionic electron–positron pair produc-
tion) in a foreseeable future.22 The bosonic supercritical well
and the conditions under which quantized energy levels
could be observed are not at present experimentally on the
table.

Note finally that the disappearance of Klein tunneling in
the infinite well limit should be of interest to recent works
that have studied the Klein–Gordon equation in a box with
moving walls23–25 (the special boundary conditions chosen
in these works were, indeed, not justified). The method
employed here for spin-0 particles obeying the
Klein–Gordon equation is also suited to treat a spin-1/2 parti-
cle in a square well obeying the Dirac equation. The scatter-
ing amplitudes in the Dirac case will, however, be different,
and the results obtained here for spin-0 particles regarding

the suppression of Klein tunneling in infinite wells will not
hold.
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