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Abstract

We investigate the issue of single particle nonlocality in a quantum system
subjected to time-dependent boundary conditions. We discuss earlier claims
according to which the quantum state of a particle remaining localized at the
center of an infinite well with moving walls would be specifically modified by
the change in boundary conditions due to the wall’s motion. We first prove that
the evolution of an initially localized Gaussian state is not affected nonlocally
by a linearly moving wall: as long as the quantum state has negligible
amplitude near the wall, the boundary motion has no effect. This result is
further extended to related confined time-dependent oscillators in which the
boundary’s motion is known to give rise to geometric phases: for a Gaussian
state remaining localized far from the boundaries, the effect of the geometric
phases is washed out and the particle dynamics shows no traces of a nonlocal
influence that would be induced by the moving boundaries.

Keywords: quantum nonlocality, boundary conditions, time-dependent
phenomena
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1. Introduction

Quantum systems with time-dependent boundary conditions are delicate to handle. Even
the simplest system—a particle in a box with infinitely high but moving walls—remains the
object of ongoing investigations. From a mathematical standpoint, a consistent and rigorous
framework hinges on unifying the infinite number of Hilbert spaces (one for each time 7), each
endowed with its own domain of self-adjointness [1-3]. Explicit solutions have been found
in specific cases, notably for the infinite well with linear expanding or contracting walls [4],
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later generalized to a family of confined time-dependent linear oscillators whose frequency
is related to the wall’s motion [5]. However general methods, such as employing a covariant
time derivative [6] in order to track the change in the boundary conditions or implementing a
quantum canonical transformation [7] so as to map the time-dependent boundary conditions
problem to a fixed boundary problem with another Hamiltonian can at best give perturbartive
results. Explicit solutions call for numerical methods [8, 9] but these are not well suited to
investigate fundamental effects, in particular when controversial effects are discussed.

This work precisely deals with a controversial effect, namely the existence of possible non-
local effects induced by time-dependent boundary conditions on a quantum state remaining
localized far from the boundaries. From a general standpoint, it is known that systems with
a cyclic evolution may display geometric phases, a global property often said to be ‘nonlo-
cal’ or ‘holistic’. However it was initially suggested by Greenberger [10], and subsequently
mentioned by several authors, e.g. [11-16], that time-dependent boundary conditions could
give rise to a genuine form of nonlocality: a particle at rest and localized in the center of the
box, remaining far from the moving walls, would be physically displaced by the changing
boundary conditions induced by the walls motion. This claim was never shown rigorously to
be exact (some arguments were given to support the idea of nonlocality, sometimes in a hand
waving fashion), but to the best of our knowledge this claim was not shown to be incorrect
either.

In this work we show that the moving walls have no effect on the dynamics of a quantum
state placed far from the wall. More precisely we prove that the dynamics of a particle with
an initial Gaussian wavefunction (the most widely investigated case) does not depend on the
boundary conditions as long as the wavefunction remains negligible at the boundaries. This
will first shown to be the case in the infinite well with linearly moving walls, and we will
then extend these results to a family of related systems in which the moving boundaries can
give rise to geometric phases. The ingredients employed, combining a time-dependent unitary
transformation with a property of the Jacobi theta functions, will be described in section 2.
Section 3 will deal with the infinite potential well with linearly expanding walls, including the
periodic case with instantaneous reversal. Section 4 will investigate confined time-dependent
oscillators with a specific relation between the oscillator frequency and the position of the
confining walls; contrary to the infinite potential well, such systems admit cyclic states dis-
playing geometric phases that will be seen to be induced by the wall’s motion. We will nev-
ertheless show that the effect of the geometric phases is washed out when the initial quantum
state is localized inside the well. The results obtained will be discussed in section 5.

2. Quantum canonical transformation

2.1. Hamiltonian and boundary conditions

The Hamiltonian for a particle of mass m placed in a potential v(x, ¢) inside a confined well of
width L(z) with moving boundaries is given by
P2

H=—+YV 1
2m+ (D

Vix,t) = 2, 2
(1) +o00 otherwise 2)

{v(x,t) for — %Q <xg MW
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The solutions of the Schrodinger equation

iho(x,t) = H(x, 1) 3)

must obey the boundary conditions ¢(+L(¢)/2) = 0 (if the well is embedded in a larger sys-
tem more general boundary conditions can be considered [17]). The even and odd instanta-
neous eigenstates of H,

on(x, 1) = \/2/L(r) cos [(2n + 1) wx/L(t)] 4)

and

©n(x, 1) = \/2/L(¢) sin [(2n) mx/L(1)] ®)
verify H|¢n) = E,(t)|¢n) and H|p,) = E,(t)|¢n). The instantaneous eigenvalues are
E,(t) = (2n + 1)* h2x%/2mL2(¢) (with n a positive integer) and E, (1) = (2n)> h2x?/2mL2 (1)
(with n a strictly positive integer) for the even and odd instantaneous eigenstates resp. However
the ¢, or ¢, are not solutions of the Schrodinger equation. Indeed, due to the time-varying
boundary conditions, the problem is ill defined, eg the time derivative d,3)(x, t) involves the
difference of two vectors with different boundary conditions belonging to different Hilbert
spaces [2]. Hence neither the difference v (x, #') — 1 (x, t) nor inner products taken at different
times (¢(¢')] 1(¢)) are defined.

In the following we will restrict our discussion to symmetric boundary conditions as speci-
fied by equation (2) and to initial states of even parity in x (in practice, states initially located
at the center of the box), so that only the even states ¢, (x, t) will come into play. The reason for
this choice is that the derivations are technically simpler and the discussion more transparent.
The extension to initial states with no definite parity and to non-symmetric boundary condi-
tions is given in the appendix.

2.2. Unitary transformation

To tackle this problem the most straightforward approach is to map the Hamiltonian H of the
time-dependent boundary conditions to a new Hamiltonian H of a fixed boundary problem.
This is done by employing a time-dependent unitary transformation implementing a ‘canoni-
cal’ change of variables [7]. Let
i€(t

M(t) = exp (%h) (XP+ PX)> (6)
be a unitary operator with a time-dependent real function £(¢) defining the canonical transfor-
mation [7]

) = M(1) [4)) )
H(t) = M()H () M (1) + ihM(1)0, M (1) ®)
A= M()AM (1) 9)

the latter holding for time-independent observables A such as X or P. Note that M () repre-
sents a dilation, ie any arbitrary function f(x) transforms as M(r) f(x) = e¢()/2f(e¢Mx). It is
therefore natural to choose £() so that exp(&(#)) = L(t) /Lo where Ly = L(¢ = 0) so as to map
the original problem to the initial interval [—Ly/2, Ly /2], with
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B () = (Wl MIOI) = |70 (% r) . (10)

|1} is the solution of the fixed boundary Hamiltonian (8) whose explicit form is

Hm=%+wb—iﬂﬁm+my (a1

Equation (10) suggests to work with solutions of H (¢). This is particularly handy when a
set of complete solutions |¢),) obeying the canonically transformed Schrédinger equation

ih0,|y) = H|y) (12)

are known: the initial state |1)(fo)) is mapped to [¢)(fy)), which is evolved by expansion over the
basis functions |¢),,) before being transformed by the inverse unitary transformation.

3. Evolution of a localized state in an infinite potential well

3.1 Moving walls at constant velocity: basis solutions

Let us now consider the infinite potential well corresponding to v(x, ) = 0 in equation (2). We
will assume throughout that the walls move at constant velocity ¢, so that the wall’s motion
follows

L(1) = Lo + qt. (13)

q > 0 (g < 0) corresponds to linearly expanding (contracting) walls. The linear motion (13)
has been indeed the main case studied in the context of nonlocality induced by boundary
conditions, due to the existence of a complete basis of exact solutions of the canonically
transformed Schrodinger equation (12). These solutions were originally obtained by inspec-
tion [4], or later from a change of variables in the Schrodinger differential equation [5]. From

these solutions it is straightforward to guess the basis functions |QZ,,> of equation (12) that are
found to be given by

- 2 mlLWIBLOl ipr20p41)? [1L() 2 df J2m
Un(x,1) = 4 /L—Oe 2nig Gty 1) ar/ cos (m(2n + 1)x/Ly) (14

where n = 0, 1, 2... For the linear motion (13), the integral immediately yields

f L (15)
o L(7')? Lo(Lo +q1)’

As mentioned above the ¥, (x, 1) are not eigenfunctions of H, but they can be employed as a
fundamental set of solutions in order to obtain the state |+)(¢)) evolved from an arbitrary initial
state |1 (¢t = 0)) expressed as

G(0) = S0 Galt = 05 (x = )1 (0). a6

n

The solution (x, t) of the original problem with moving boundaries is recovered from TIJ(X, t)
through equation (10). In particular, each solution ¥, (x, r) is mapped into
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2 mllonm] =2 4
Pu(x, 1) = “me e b QD) JTLW) TR 2m (r(2n 4+ 1)x/L(z)). (17)

3.2. Gaussian evolution

3.2.1. Initial Gaussian. Assume the initial wavefunction is a Gaussian of width d,

(1- i)efﬁ
23/471/4\/—id
with a maximum at the center of the box (x =0) and with negligible amplitude at the
box boundaries x = £Lg/2. We will consider in the appendix the more general case of
an initial Gaussian with arbitrary initial average position and momentum, given by equa-
tion (A.1).|G(r = 0)) is expanded over the basis states |1,,(r = 0)) as per equation (16) where
2n(q) = (a(t = 0)|G(t = 0)) is readily obtained analytically from

(x] G(t=0)) = G(x,0) = (18)

+oo
wla) = [ 0i@0GE 0 (19)
(1 — §)23/471/4 w2 d?h(2n + 1)?
T 1 ama P\ o (R + 2idPmg) ) (20)
V—=idly 7+ T o (U

The fact that the solutions 1), (x, f) stretch (in the expanding case) as time increases has been
taken as an indication that the initial Gaussian would also stretch provided the expansion
is done adiabatically so that the expansion coefficients g, remain unaltered [10]. Hence the
physical state of the particle would be changed nonlocally by the expansion, although no force
is acting on it.

We show however that the evolution of the initial Gaussian can be solved exactly in the
linear expanding or retracting cases by using equations (10) and (16), displaying no depend-
ence of the time-evolved Gaussian on the walls motion. The periodic case, in which the walls
motion reverses and starts contracting at 7/2 so that L(T) = L, follows by connecting the solu-
tions at t = 7/2.

3.2.2. Sum in terms of Theta functions. Our approach to this problem involves the use of spe-
cial functions, the Jacobi Theta functions, and a well-known peculiar property of these func-
tions (the Transformation theorem [18]). Let us introduce the Jacobi Theta function, ¥,(z, k),
defined here as

92(z, k) =2 Z e m(TH1/2) oo [(2n+1)7] 21

n=0

with Tm(x) > 0. It can be verified that the time evolved solution t)(x, ) = don 2n(q)Un(x,1)
can be summed to yield a theta function 1,, and that further applying equation (10) gives the
wavefunction evolved from G(x, 0) as

ima? 9, L(r
(1= i) (2m) /4 "5 9, (2, 1)
P(xt) = (22)

—idLoL(1)1/ 3 + 72 OL(1)i=0
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with

X 4rhd? 2mh /t 1
Z=
0

- e - - P
L0 " Lo Qlmd L) —ihLy) ~ m Jo LR 23)

In general v as well as z and x depend on g, the velocity of the walls motion. We will explic-
itly denote this functional dependence, ie z(g), k(q). Note that the particular case g = 0 cor-
responds to static walls with fixed boundary conditions.

3.2.3. Comparing the static and expanding walls cases. In order to compare the time evolved
wavefunction in the static and moving problems, let us compute ¥ (x, ; ¢ = 0) /2 (x, t; ¢) which
after some simple manipulations takes the form

Ylrrg=0) _ 2o 2w (r(0))"? 9, (:(0).5(0))
Sara — (50) Riaray o

We now prove that for the physical values of the parameters corresponding to a localized
Gaussian, this expression is unity. The first step is to use the Jacobi transformation [18]

e—izz/mr z 1
(k)= —= | =, ——
2(&5) (—ir)/2 (:e /-c) )
for both 1, functions of equation (24). ¥4 is the Jacobi theta function defined by
> . 2 .
194 (Z, K,) — Z (_l)n elmhn eZlnz. (26)
n=—oo

Equation (24) then becomes

brrg=0) P (55 —1/x(0)

- = . 27
VEED gy (28 1/ule)
‘We then note that
Im[—1/k(q)] = d®m’L(1)* /7 (4d*m* + h*1*) . (28)

This is typically a very large quantity, Im — 1/k(g) > 1. This comes from the fact that the
typical spatial extension Ax of a Gaussian at time 7 is deduced from its variance (A)c)2 Ax
needs to be much less than the spatial extension of the well L(z) since by assumption the
quantum state remains localized at the center of the box, far from the box boundaries. Recall
indeed that for a Gaussian (Ax)> = d2 + (ht)2/(2dm)>, so for expanding walls the condition
(Ax) (t) < L(¢) can be fulfilled even for large ¢ provided ¢ is sufficiently large. However,
since we are comparing here the evolution for an arbitrary value of g with the fixed walls case
(g = 0), the stricter condition for g =0

(Ax) (1) < Lo (29)

is the one that needs to hold. This condition will only hold for a limited time interval, given
that the initially localized quantum state will spread and necessarily reach the walls. But then
of course the question regarding nonlocal effects of the boundaries motion becomes moot,
since a local contact with an infinite wall (be it fixed or moving) reflects the wavefunction
and modifies its dynamics. This is why the investigation concerning nonlocal effects is only
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relevant for times such that equation (29) holds, although it should be stressed that the time
evolved expression for 1 (x, 7) that we have derived, given by equation (22) remains valid for
any 7.

Now from the definition of 14 we have

o0

s (M _L) _ Z (_l)nei(ﬂ'n2_2nz(q))[Re(ﬁ;))]e—(ﬂ-n?_mz(q))[Im(ﬁq'))]'

k(q)" w(q) (30)

n——0oo

The last term of equation (30) is negligible except for n =0, ie exp (7rn2 —2nz(q))
{Im (ﬁ)] ~ 0 4 d, because z(g) is real, with |z(¢g)| < 1/2 (since the spatial wavefunc-

tion is assumed to vanish outside the central part of the well), and Im(1/x) < 0. Therefore
equation (30) is reduced to the single term n =0 yielding ¥4 (z(q)/k(q), —1/k(q)) =~ 1.
This holds for any value of ¢ and in particular for ¢ = 0 (fixed walls). Hence, according to
equation (24), we have

Y(x,t;q) = p(x,1;9 = 0) (31

meaning that the dynamics of the wavefunction initially localized at the center of the box does
not depend on the expanding motion of the walls at the boundaries of the box. In particular the
adiabatic condition does not play any particular role, as equation (31) holds for any value of
the wall velocity ¢. While each individual state 1, (x, t) does stretch out as time increases, the
sum (16) for ) (x, t) ensures that the interferences cancel the stretching for the localized state.
From a physical standpoint no motion is induced superluminally on a localized quantum state
by the walls expansion.

3.2.4. Contracting and periodic walls motion. The same results hold for walls contracting
linearly (with now g < 0), provided the wavefunction remains localized far from the walls
throughout. The evolution in the periodic case follows by considering successively an expan-
sion with L(f) = Ly + gt up to t = T/2 followed by a contraction from ¢t = 7/2 to T with the
walls positions determined from

L(t) = Ly + (T — 1), (32)

now with ¢ > 0. The analytic solutions (14) and (17) do not verify the Schrodinger equa-
tion during the reversal. Assuming the walls motion is instantaneously reversed at t = 7/2,
the continuity of the wavefunction imposes to match the expanding and contracting solu-
tions at that time. Note in particular that an expanding basis state 1, (x, T/2 — €), where ¢ is
small, does not evolve into the ‘reversed’ state 1, (x, T/2 + ¢) after the walls motion reversal.
Indeed the basis solutions of the Schrodinger equation with the contracting boundary condi-
tions given by equation (32) are

ir2h(2n+1)2(2—T) img:?
(_2"'<2L0+W><lo+q<f—f>>_m<lo+qq<f—r>> cos [T+ Dx
Lo+ q(T — l‘)

0 =\ T

(33)
and obviously ¢, (x, T/2) # 5 (x, T/2). We have instead a diffusion process, in which a given
basis function ¥, of the expanding boundary condition is scattered into several outgoing chan-
nels 7 of the contracting boundary case. This holds for any nonvanishing value of ¢ to first
order, we have
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Uu(x,T/2) . mx’ 5

hLo
so that even in the adiabatic limit the expanding basis wavefunction cannot be matched to a
contracting one, as implicitly assumed in [10].

In order to obtain evolved localized Gaussian in the periodic case, we can proceed as fol-
lows. From equation (31) (taken for ¢ — 00), we know that ¥ (x, T/2; q) is a freely evolved
Gaussian. We can thus repeat the same steps leading to (22), but starting from the time evolved
Gaussian

inn?

(1 _ i)e 2(h1/2—2id%m)

G(x,T/2) =
(2m)"/*\ Ja (522 - 2i)

(35)

instead of equation (18). G(x, T/2) s the expanded over the contracting basis functions ¥¢ (x, 1)
(see equation (33)), the expansion coefficients g%(g) replacing the former g,(¢q) introduced
above in equation (19). The result is

(1 = 23471 exp ( h(2mnt)* (4 mHihT) >

" 2m(2Lo+4T) (h(Lo+4T) —2idPmq)
KT : (h(Lo+qT)—2id?mq)
VI F qTy /5 — didy | i et 2 dne
The final step, as above, is to write the formal infinite sum in terms of the Theta function

¥,. At t = T, when the walls have recovered their initial position L(7) = L, the time evolved
Gaussian is given by

(36)

g.(q) =

iquz

(1 — i) (2m) /4 e 0 9, (%,HC(Q))

‘x,T;q) = 37
v (x q> T _ 4idm —2id*mq+hLo+hqT 37)
Lo (d h ) 4d>m+-ihT
where £°(q) (at time r = T) is given by
i 27h (RT — 2id*m
K°(q) = ( ) (38)

 Lom (A(Ly + ¢T) — 2id?*mq)’

We then use the same method that led us from equations (24) to (31) based on the Jacobi trans-
formation theorem to show that ¥°(x, T;q) = ¢°(x, T;q = 0), that is the walls motion after
a full cycle has no consequence on the dynamics of a localized quantum state of the particle.

4. Effect of geometric phases on a localized state evolution

4.1. Geometric phases and nonlocality

For the infinite potential well with moving boundaries, the fact that the basis functions are
not cyclic states even in the case of periodic motion of the walls (as seen in section 3.2.4)
precludes the existence of a cyclic non-adiabatic geometric phase [19]. However geometric
phases [20] could be relevant to the issue of nonlocality. Indeed, a geometric phase is a global
quantity, affecting the quantum state globally even if the effect causing the geometric phase
lies in a localized space-time region (we will see an explicit example below). Some authors
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even ascribe to geometric phases nonlocal properties [21] including in the context of time-
dependent boundary conditions [14].

For these reasons it is relevant to see if the results obtained in section 3 for the infinite
potential well could be affected in systems admitting geometric phases. It turns out that there
are systems, a family of time-dependent linear oscillators (TDLO) confined by infinitely high
moving walls, whose solutions are closely related to the ones of the infinite well with time-
dependent boundary conditions, that admit cyclic states that pick up geometric phases. We
will see by using a simple scaling property that the geometric phase in this system is caused
by the walls motion, but that nevertheless the geometric phases have no consequence on the
dynamics of a localized quantum state.

4.2. Confined time-dependent oscillators: geometric phase and basis states

4.2.1. Confined TDLO. Let us start again from the Hamiltonian (1) but now take v(x,?) of
equation (2) to be given by

)
v(x,1) = —% ‘9}41(;(;))(2. (39)

This is a TDLO confined in the interval —L(#)/2 < x < L(t)/2, where as above L(t) repre-
sents the size of the box between infinitely high and moving walls. This TDLO is special in
that the frequency Q2(f) = —9?L(t)/L(t) depends on the walls motion'. It is then known [11,
15], as can be checked directly by inspection, that the functions 4, (x, 7) and 1, (x, 1) defined
respectively by equations (14) and (17 ) still obey the Schrodinger equations A0, = Hv) and
170, = H1) where the potential between the walls is now given by equation (39).

4.2.2. Cyclic evolution. Assume a confined TDLO with a real and periodic function L(¢) with
period T is initially in a state 1, (x, # = 0), given by equation (17). After a full cyclic evolution
¥ (x, T) returns to the initial ), (x, 0) but acquires a total phase y,, ie

UYu(x, T) = e #9),(x,0). (40)

Following Aharonov and Anandan [19], i, can be parsed into a ‘dynamical’ part J,, encapsu-
lating the usual phase increment by the instantaneous expectation value of the Hamiltonian
and a ‘geometric’ part 7y, reflecting the curve traced during the evolution in the projective
Hilbert space (defined as the space comprising the rays, that is the states giving rise to the
same density matrix [19, 20]). p, is directly obtained from equation (40) (with equation (17))

and is seen to be proportional to fOT L(¢')~2df. The dynamical phase

T
5= 1! /O (W'Y H (1)) 0 @)

is computed through a tedious but straightforward calculation. The nonadiabatic geometric
phase 7, is then obtained as

=t 8= (1 - ﬁ) | @0 - twotnww. @

!'Note that when L(¢) is linear in ¢, 9?L(t) vanishes and the potential (39) becomes that of the infinite well. Hence
in general equation (17) represents the solution of a confined TDLO, only the special case for which 62L(t) = 0
corresponds to the infinite well with moving walls.
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Note that 7, is nonzero for nontrivial choices of L(z).

4.2.3. Scaling. 1In order to get a handle on the physical origin of the geometric phase on a
state 1,, we use the following scaling property. By rescaling L(f), L(t) = kL(t), with k > 1
one changes the walls position while leaving the dynamics invariant: put L(z) = kL(t), with
k > 1. Then the frequency Q2(t) = —?L(t)/L(t) and therefore the Hamiltonian are not modi-
fied, by virtue of equation (39). However as is apparent from equation (42) the geometric
phase scales as 7, = szyn. Hence increasing the walls motion by a factor k induces a change
in the geometric phase on the basis states ¢, (x, T) that can be detected at any point x inside
the confined oscillator.

This is illustrated in figure 1 featuring a TDLO with
1/2
1
I @3)
(1 4+ gcoswt)
and the frequency in equation (39) is given by

_ qw?(g(cos(2wt) — 5) — 4 cos(wt))
8(g cos(wt) + 1)? '

Q(1) = —7L(1)/L(1) (44)
This particular choice of L(¢) for the boundary motions has been previously investigated and
is known in the infinite potential well case to lead to chaotic or regular behavior as Ly,q and w
are varied [8]. Here instead we are looking at the confined TDLO, ie with the potential given
by equation (39): figure 1 shows the geometric phase 7,, computed from equation (42) for the
first basis states 9, and for different values of Ly = kL thus illustrating the dependence of v,
on the walls motion.

4.3. Confined time-dependent oscillators: localized state

4.3.1. Evolution of Gaussian state. The time-dependent boundary conditions induce geomet-
ric phases on the basis states 1,. Although a Gaussian state G(x,0) initially given by equa-
tion (18) can be expanded at any time in terms of these basis states 1), this does not imply of
course that the evolved wavefunction (x, ) will also pick up a phase after a full cycle.

Actually, since equations (14) and (17) still hold for the confined TDLO with moving
walls, we can again write the time-evolved solution ) (x, T), here after a period T in terms of
a Theta function. Formally 1 (x, f) is again given by equation (22), the only difference relative
to the infinite potential well of section 3 being that L(¢) is a periodic function and not linear in
t. To assess the relevance of geometric phases, we rescale the walls motion while leaving the
Hamiltonian invariant as explained above by putting L(z) = kL(t). We have seen that this res-
caling modifies the geometric phases. Hence by comparing the rescaled wavefunction ) (x, T)
with the original solution ¢ (x, T), evolved in both cases from the same initial state G(x, 0), we
can infer whether the geometric phases modify the quantum state evolution.

Writing 9 (x, T) /1 (x, T) in terms of ¥, functions as per equation (22), and noting that
7 =z/k, & = k/k* and L(T) = L,, we apply the Jacobi transformation (25) to find given by
equation (18). From equation (23) we see that Z = z/k and & = k/k? so that by using equa-
tion (22) and the Jacobi transformation (25) we are led to

BT) 0 (15 Kn)
¢<X’T) 194 (i’_l/h") ‘

(45)

10
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27T
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o o®

o 10 20
n

Figure 1. The geometric phase 7, (see equation (42)) is given as a function of n for the
lowest basis states 1, (7, is plotted mod2). The system is a time-dependent oscillator
with the frequency €2(x, r) and the walls motion L(f) given by equations (44) and (43)
resp. The black, blue dotted and red curves correspond to Ly = 1000, 800, and 400
resp. while Ly = 100 is shown in light gray. Put differently, the curves correspond
to Lo = 100 and the scaling parameter k =4, 8 and 10 (¢ = 0.1,w = 1, units with
h,m,e = 1 are used).

0.3

Y(x,T)
o

0.3

Figure 2. The state i(x,r =T) evolved from an initial Gaussian (equation (18),
here with d =1) in a confined oscillator with the time-dependent frequency given
by equation (44) and the walls moving according to equation (43) with Ly = 100 is
compared to the state at = T evolved from the same initial Gaussian in the unconfined
case (same Hamiltonian but without confining walls). The black line shows Ret(x, 1)
at t = T (after one full cycle); the red line (upside-down) shows the evolution for the
unconfined TDLO.

The equality on the right handside holds only provided the conditions given above between
equations (27) and (31) hold (recall we have k > 1). Under these circumstances we see, by fol-
lowing exactly the reasoning given above thatboth ¥y (3 £, —k*/k) ~ land ¥, (£, —1/k) ~ 1.

Equation (45) proves that while rescaling the walls motion changes the geometric phase
of the basis functions according to 7, = kzvn, no such change takes place when the initial

1
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state is the Gaussian G(x, 0) localized at the center of the confined time-dependent potential.
The geometric phases picked up by each basis state over which G(x, 0) is expanded vanish by
interference. Recall that an arbitrary initial Gaussian placed in a periodic (unconfined) poten-
tial is not cyclic unless specific conditions are verified [23]. Equation (45) does not depend on
whether these conditions are met and suggests that the wavefunction in the time-dependent
boundary problem follows the same evolution as the one of the unconfined problem with the
time-dependent potential: ¢(x, T) can thus pick up a nonadiabatic cyclic geometric phase if
the evolution in the unconfined potential leads to such a geometric phase, but there will be no
additional effect due to the time-dependent boundaries.

4.3.2. Approximate solution for an unconfined time-dependent oscillator. Note that as a
byproduct of the present treatment, we have obtained an interesting closed form expression
for the evolution of an initial Gaussian in an unconfined time-dependent linear oscillator
potential for which there is a function L(¢) such that the frequency can be put under the form
O2(t) = —02L(t)/L(t). Indeed, equation (22) along with the Jacobi transformation (25) and

U4 (£,—1/k) ~ 1 give the evolved Gaussian ¥ (x, 1) as

m2o,L i 4rLz2<*<’) — )]
(1—1) (277)1/ 4e‘m2thr>(t) e /[ Ot =242l OiL (1) =g HihL]

d}(x’ t) - m 1 2im gy 4mwd’h 2imhT (1)
—idLoL(1)/ 2 + jig OL(t)i=0 L 2dmoLin) = m

(46)

where 7(1) = fot L=2(¢)df'. Contrary to the standard approaches for solving Gaussian prob-
lems in TDLOs, that involve nonlinear equations calling for numerical integration [22, 23],
equation (46) can be often obtained explicitly analytically, depending on whether the closed
form integral of 7(¢) is known (of course the range of application of equation (46) is very
limited compared to standard methods).

4.3.3. Example. Let us look at the localized state evolution for the TDLO whose geometric
phases in the basis states were shown in figure 1. We start with an initial Gaussian state and
let it evolve up to ¢t = T for the TDLO confined by infinitely high moving walls on the one
hand, and for the same but unconfined TDLO on the other. Figure 2 shows the real part of
the evolved wavefunction in both cases. The curves are identical, illustrating that the walls
motion has no influence on the evolution of a localized state. Note that the wavefunction for
the unconfined TDLO has been computed by employing an independent and totally different
method, based on Gaussian propagation through the solutions of Ermakov systems (see [24]
for details).

5. Conclusion

To sum up we have shown that contrary to earlier claims, time-dependent boundary conditions
do not induce an effective or explicit form of nonlocality, as happens eg for Bell correlations.
This was seen to be the case for the paradigmatic particle in a box with moving walls and
also holds for systems in which the moving boundaries induce geometric phases. Although a
moving wall changes the boundary conditions, this change modifies the entire quantum state
of the system (instantaneously in the non-relativistic framework) only if the state has a non-
negligible amplitude in the boundary region. This is clearly not the case for a localized state
placed far from the moving walls.

12



J. Phys. A: Math. Theor. 51 (2018) 095303 A Matzkin

Acknowledgements

I thank Dipankar Home (Bose Institute, Kolkata) for early discussions on the topic of
nonlocality induced by moving walls.

Appendix

A.1. Time evolved state in terms of theta functions

We first consider the case of an initial state given by the Gaussian

_G=x)? g
e 42 h

(2%)1/4\/2 :

Contrary to the initial Gaussian given by equation (18), G(x,0) has its maximum at x, any-
where inside the box (but sufficiently far from the box boundaries, since by assumption the
initial state has negligible amplitude at the boundaries), and a mean momentum py. In addi-
tion to the even basis functions (14) and (17) derived from the even instantaneous eigenstates
¢n(x,t) given by equation (4), we will also need odd basis functions derived in the same way
from the odd eigenstates ¢, (x, ) given by equation (5); for example the odd counterpart to
Y, (x, 1) defined by equation (17) is

2 i e L(t . t I — /
Glt) =/ meizf&%)( Hih @) ILEO T2 G O /L() . (A2)

The expansion coefficients g, of equation (19) now become

(x] G(r = 0)) = G(x.0) = (A.D)

“+oo
ha(q) = ¥ (x,0)G(x, 0)dx (A3)

2 i[21rd2h(2n+l)+(Zdzpo—ihxo)Lo]z i[zwdzh(2n+1)+(—2d21:0+inx0)L0]2
(1 — i) (—7‘(/2)1/4 e_4702 e AR (oo —ily) | o 4dPhLy(2mBiL()—o—iFly)

\/m ‘% + Zima;iigt)zo
(A4
for the even basis functions and

Jjn(q)

400
/ ¢ (1,00 (x, 0)dx AS)

N 1[27rﬁ,d2(2n)+(—2d2170+ihx0)L0]2 i[2mna? @+ (2 =i ) o '

E 3 7, —
1(27.(.)1/4 6_47026 SR (Lo —ihly) g AL (242 oL (1) (—q—ihLo) (A6)

2i L(t),—
\/dT() % + 1m8;ilit),,0

for the odd basis functions.

It can be checked, after a tedious but straightforward calculation that the time evolved state
Y1) =350 (@) Vn(x,1) + 32,50n(q)Ga(x, £) can be written in terms of 8 Jacobi theta
functions, half of them being theta functions of the second type ¥,(z, k) introduced above
(equation (21)), the other half (for the odd part of the sum) being functions ¥3(z, k) defined by

13
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Put

o0

193 Z, , Z eu‘mn 2mz (A7)

n—=—0o0

i (2d%py — ihxo)’ L imx? _
Azexp (-4 {Qdpo —ihvo) Lo, imP?OL(1)—o (A8)
4 PR (2PmOL (1m0 — ihLo) 2L,

1 2imO,L(t),=
dLoL(1 )\/ it ""Tﬁ’)” (A9)

2d2p() - lth

C =Ry — 2PmOL() ey

(A.10)

Note that A and C depend on xq and py. With « defined by equation (23) above, we introduce

the functions

Oxtig) = (1=i) (=m)"/* Avs(— 7o — o) /B (A1)

Or(x,159) = (1 — i) (—m)"/* A (- (I (t) - C,K)/B (A.12)

Oati) = (1=1) (=m)" " Avs(— s + Con) /B (A.13)

by(x.t1q) = (1 — i) (—77)1/414192(% +C.K)/B (A.14)

Os(x, 1;q) = (727)1/4%3(—;(2 —C,x)/B (A.15)
T 1/4 X

bs(x.t50) =~ (3) ADy (5 ~ C.R)/B (A.16)
7\ L/4 X

O7(x,1;q) = — (5) Aq93(—m +C,k)/B (A.17)

Os(x,1;q) = (;)1/4%3(% +C.k)/B. (A.18)

Then the time-evolved state 1 (x, ) analogous to the one obtained above (equation (22)) but
when the initial state is the general Gaussian given by equation (A.1) is given in terms of the

functions 6y as

8
P(x,tq) = EZ (x,1;9). (A.19)
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A.2. Moving walls at constant velocity

Let us assess the effect of walls moving at constant velocity, discussed in section 3, on the
wavefunction evolving from G (x, 0). For each of the even functions 6; (k = 1,..,4) the transfor-
mation (25) leads to the analog of equation (27) in the form

ba—0) Ui (E.—1/x(0)
0i(q) B Iy (ﬂq_) _l/lf(q)> ,

w(q)’

k=1,.4 (A.20)

where z; is the relevant argument of the theta function in the expression of 6 given by equa-
tions (A.11)-(A.14), that is z; = j:% =+ C. As explained in section 3.2.3 in the case of a sin-
gle theta function, this leads here, under the same assumptions, to 6 (x, ;¢ = 0) = 6k(x,1; q),
so that the walls motion does not impinge on the evolution of each of these even functions 6;.

For the odd functions 6, (k= 5,..,8) involving 13, we use instead of equation (25) the

Jacobi transformation [18]
—i?/km 1
e z
V(2 k)= ——=H | —,—— ). .
3(z, k) Cin) 7 3(/@ K) (A21)
The result
%(0)
tig=0) _ % (35 ~1/x(0))
Ok (q) 03 (M _1/K(q))

x(q)’

=1, k=5,..8 (A.22)

is shown to hold by following the same arguments given in section 3.2.3, but by using the expan-
sion (A.7) instead of (26). Thus equation (31) above stating that ¢(x, t; ¢) = ¥ (x,#; ¢ = 0) also
holds when the initial state is the Gaussian (A.1) and 1 (x, #; ¢) is given by equation (A.19).

A.83. A single moving wall

In the main text we have considered the symmetric boundary conditions specified by equa-
tion (2), as this gives a simpler treatment. However in most of the works [10-16] dealing with
the subject of nonlocality induced by time-dependent boundary conditions, the problem of an
infinite well with a single moving wall was considered. In that case, the Hamiltonian has the
following boundary conditions:

P2

H=—+V (A.23)
2m

(A.24)

0 for 0 < x < L(p)
Vi) = { +00 otherwise

The instantaneous eigenstates of H are similar to the odd functions @, (x, ) introduced in equa-
tion (5) and the basis functions to the ¢, (x, ) of equation (A.2); they are obtained by replacing
in these expressions n by n/2, yielding

Jfa(x, 1) = \/2/L(¢) sin [nmx/L(¢)] (A.25)

for the instantaneous eigenstates and
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2 imxz[é); 0] i t I\ — / .
Fo(x.f) = meizwg R e N 0 70) (A.26)

for the basis functions. Therefore, provided we are willing to keep the —oo bound in equa-
tion (A.5), a harmless approximation given the assumptions concerning the initial Gaussian,
we can transpose the results obtained in the present appendix (equations (A.6), (A.15)—(A.18)
and (A.22)) to the case of a single moving wall (note that relative to these expressions, the
arguments of J3 are rescaled as z — z/2 and x — r/4). Hence the conclusion concerning
the non-relevance of the wall’s motion relative to the evolution of a state compactly localized
inside the box also holds in this case.
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