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Abstract

An analytical treatment of a propagating wavepacket incident on a transient

barrier reveals an effect in which, for a particular time interval, the time-

varying transmission probability exceeds that for the free propagation of

the wavepacket. We show that this effect can be interpreted semiclassically.

This effect is quantified and it is shown that its magnitude is in one-to-one

correspondence with the strength of the barrier, a feature that has the potential

to be used in a scheme for key generation. It is found that the speed with which

the information about the barrier perturbation propagates across the wavepacket

can exceed the group velocity of the wavepacket. An application to the speed-up

of entanglement generation is also considered.

PACS numbers: 03.65.−w, 03.65.Ta, 03.67.Hk

(Some figures may appear in colour only in the online journal)

1. Introduction

A number of interesting phenomena have been uncovered in recent years using the dynamics of

quantum wavepackets. Among these, a class of novel effects as in the revival of wavepackets [1]

and quantum transients [2] are worth mentioning. In particular, for propagating wavepackets,

appropriate changes in the boundary conditions for suitable potentials can give rise to curious

dynamical features [3–6]. One such effect, a version of which was numerically put into

evidence in earlier works [5, 6] and called ‘quantum superarrival’, is demonstrated in this

paper in terms of an analytical treatment by considering a Gaussian wavepacket which is

incident on a time-dependent potential barrier. For the purpose of the treatment given here, the

form of this barrier is chosen such that it corresponds to a transient parabolic barrier acting

over a small time interval during which the peak of the propagating wavepacket crosses the

maximum of the parabolic barrier. In this case, we confirm the existence of an interval of

time during which there is an enhancement of the time-evolving transmission probability as
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compared to the case of a wavepacket freely propagating in the absence of any potential barrier.

We further show that this effect can be explained semiclassically by analyzing the underlying

classical dynamics encapsulated in the path integral form of the evolution operator.

The term ‘superarrival’ used in [5, 6] refers precisely to this early increase (relative to

the free case) in the transmission probability. In the usual studies, the transmission/reflected

probabilities for the scattering of wavepackets by potential barriers are calculated after a

complete time evolution when the asymptotic values have been attained. In this work, based

on the analytical solution of the relevant time-dependent Schrödinger equation, a phenomenon

is displayed which occurs during the time evolution of such a probability that is found to

have the following salient features. While the effect of barrier perturbation resulting in early

arrivals is discernible by measuring the transmission probability, it becomes more pronounced

with the increase of the rate at which the barrier perturbation occurs (in the case considered,

it is the strength of the barrier). Furthermore, it is shown that the effect of barrier perturbation

propagates across the wavepacket at a speed that depends upon the strength of the barrier,

thereby leading to the notion of ‘information velocity’.

In particular, for appropriate choices of the relevant parameters, it is shown that this

information velocity can be higher than the group velocity of the incident wavepacket, thereby

leading to earlier arrival times. Here, a local change in the potential affects a wavepacket

globally through its time evolution where the wavefunction plays the role of a carrier through

which the information about the barrier perturbation is transmitted. Interestingly, by exploiting

this feature, there is the possibility to develop a scheme for communication whose basic idea

is indicated in this paper. For this, we proceed by first delineating the relevant details of the

analytical treatment that leads to earlier arrival times (section 2). We then give a dynamical

interpretation of the phenomenon in terms of the path integral propagator (section 3), before

considering applications to communication and entanglement generation, as discussed in

section 4.

2. Transmission through a time-dependent parabolic barrier

2.1. Time-dependent solutions

We begin our analysis by considering a Gaussian wavepacket peaked at q0:

ψ(x, t0) =
(

2m

πα2
0

)1/4

e−m[x−q0]2/α2
0 eip0[x−q0]/� (1)

which is incident on a time-dependent barrier given by

V (x, t) = −
1

2
mk e−g(t−tB )2

x2, (2)

that corresponds to the appearance of a parabolic barrier during a small time interval. This

is achieved by choosing a Gaussian form for the time window, with the parameters tB and

g indicating the peak time and inverse width of the window, respectively. k determines the

barrier strength.

The solutions of the Schrödinger equation for the time-dependent parabolic barrier can be

obtained exactly by employing different methods, such as algebraic methods [7, 8], dynamical

invariant methods [9] or path-integral propagator methods [10]. These methods are usually

transposed from the better known time-dependent harmonic oscillator problem (see [11] and
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references therein). Here we look for the solutions by starting from the ansatz

ψ(x, t) =
(

2m

πα2(t)

)1/4

e
−[x−q(t)]2

(

m

α(t)2
− imα′ (t)

2�α(t)

)

eip(t)[x−q(t)]/� e
i

2�
[p(t)q(t)−p0q0] e

−i
2

[φ(t)−φ0], (3)

obtained by combining the path-integral properties for quadratic Lagrangians (discussed

below) with the properties of Ermakov systems. Ermakov systems involve dynamical invariants

(in the form of the ‘Ermakov invariant’) while allowing to make a straightforward connection

with classical equations of motion (see [12] and references therein). It can be checked by

direct substitution that equation (3) obeys the Schrödinger equation with the initial condition

(1), provided q(t) and p(t) obey the classical equations of motion, i.e.

∂2
t q(t) = ω2(t)q(t) (4)

and ∂t p(t) = m∂2
t q(t), with q0 ≡ q(t0) and p0 ≡ p(t0); α(t) is a solution of the nonlinear

equation

∂2
t α(t)

α(t)
− ω2(t) =

4�
2

α4(t)
. (5)

This nonlinear equation forms with the linear equation (4) an Ermakov pair [12]. This means

that α(t) can be expressed in terms of two linearly independent solutions of equation (4),

the precise choice of a given function α(t) depending on two arbitrary constants (denoted

I and c in [12]). These are fixed so that initially α(t0) = α0 and α′(t0) = 0, as required

so that equation (1) is consistent with equation (3). One then has q(t) =
√

2Iα(t) sin φ(t),

where φ(t) which appears in equation (3) is known in the context of Ermakov systems as the

phase function; it is given by ∂tφ(t) ≡ 2�α−2(t). Note that Ermakov systems have often been

employed in order to study the solutions of the classical time-dependent harmonic oscillator

[11]. Besides transforming an ubiquitous nonlinear equation into a linear one, they offer

several advantages: for example by construction α(t) is a positive definite quadratic form [12],

ensuring that ψ(x, t) given by equation (3) is normalizable.

2.2. A measure of early arrivals

We consider situations in which an initial Gaussian wavefunction (1) lies far on the negative

axis and is launched at t0 toward the right. The wavepacket spreads while traveling to the right

(with the spread controlled by α(t)). A detector placed at a point xT far beyond q0 measures the

time-dependent transmission probability by counting the transmitted particles arriving there

up to various instants. At any instant before the asymptotic value of the reflection probability

is attained, the time evolving transmission probability in the region xT � x < ∞ is given by

T (xT , t) =
∫ ∞

xT

∣

∣ψ(x, t)
∣

∣

2
dx (6)

and then it follows from equation (3) that

T (xT , t) =
1

2
erfc

[

√
2m(xT − q(t))

α(t)

]

. (7)

For definiteness we will take T (xT , t) to describe the probability of the arrival of the wavepacket

at x = xT at time t. Recall that the notion of arrival times in quantum mechanics is ambiguous

[13] and that strictly speaking T (xT , t) corresponds to the probability that the particle is found

at x > xT when performing a position measurement.

We compute the transmission probabilities for various sets of parameters. In order to assess

the influence of the appearance of the time-dependent barrier on the transmitted wavepacket,

we set tB in equation (2) so that the maximum of the free Gaussian reaches x = 0 when

3
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(a) 

(b) 

(c) 

Figure 1. Features of wavepacket transmission for a system with parameters q0 = −103, p0 =
10, m = 5 · 104, α2(t0) = 107, tB = 5 · 106, g = 10−10 (atomic units). (a) The transmission

probability T (t) is plotted for the free case (black curve) and for several time-dependent barriers

characterized by different strengths: k/1011 = 1, 3, 6, 9, 15 (the curve color goes from light blue

to red (from top to bottom) as k increases). (b) The ratio vI (k)/vg between the barrier perturbed

information velocity and the free group velocity is plotted as a function of the barrier strength k.

(c) The magnitude of early arrivals η is plotted versus k. For the values of k considered in (a), td/tB
ranges from 4.55 to 13.80, whereas tc/tB ranges from 15.94 to 15.99.

the barrier strength is the greatest, i.e. V (x, tB) = − 1
2
mkx2 and q f (tB) = 0 where f denotes

the free case (k = 0). Taking identical initial Gaussians in the free and barrier cases, we can

appropriately choose the initial position and momentum parameters of the initial wavefunction

so that ψ(x, t) and ψ f (x, t) remain almost identical up to times slightly below t = tB. At that

point, the rising barrier perturbs the wavepacket, whereas in the free case the Gaussian keeps

propagating with an average momentum p f (t) = p0. Note that depending on the barrier height

k and width g, part of the wavepacket can be reflected; the transmitted and reflected parts are

described by the right and left tails of equation (3) respectively, that spread as t increases.

The transmission probabilities are plotted (as a function of time) in figure 1(a) in the free

case (black curve) and for barriers with increasing strength (as the coloring goes from blue to

red). We denote the transmitted probability for the free and the barrier-perturbed cases as Tf (t)

and Tk(t), respectively. We observe that Tk(t) > Tf (t) during the time interval td < t < tc
(corresponding to early arrival times when compared to free propagation). Here tB is taken as

the instant at which the perturbation starts, tc is the instant when the free and the perturbed

curves cross each other and td is the time from which the curve corresponding to the perturbed
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(a) 

(b) 

(c) 

Figure 2. Same as figure 1 but for a system with parameters q0 = −103, p0 = 2, m = 1, α2(t0) =
5, tB = 500, g = 1/500 (atomic units). The transmission probability T (t) is plotted for the

free case (black curve) and for several time-dependent barriers characterized by the strengths:

k = 1/10 000, 1/5000, 1/2500, 1/1000, 1/500, 1/200, 1/100 (the curve color goes from light

blue curve to red (from top to bottom) as k increases). For the values of k considered in (a), td/tB
ranges from 1.05 to 6.44, whereas tc/tB ranges from 10.59 to 10.98.

case starts deviating from that in the free case, so that tc > td > tB. td is determined as the

time for which the signal strength reaches a given threshold; experimentally this is related

to the detector efficiency (for the numerical applications given in this work we have set this

threshold to be 1% of the maximum signal strength).

We now define the quantity η which determines the magnitude of this effect given by

η(k) =
Ik − I f

I f

, (8)

where Ik and I f are defined with respect to the time interval 	t = tc − td during which

superarrival occurs, as follows:

Ik =
∫

	t

Tk(t) dt; I f =
∫

	t

Tf (t) dt. (9)

The magnitude of early arrival η is a function of the barrier strength k. In figures 1(c) and 2(c)

we plot η versus k for a couple of different sets of parameter values.

Next, in order to determine how fast the information about barrier perturbation travels to

the detector, we note that the observer who records the growth of the transmission probability
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becomes aware of the perturbation (occurring from the instant tB) at the instant td when the

transmission probability starts deviating from the free case. If the potential barrier and the

detector are separated by the distance D, one can define4 an information velocity vI by

vI(k) =
D

td − tB
. (10)

We compute vI(k) and plot the function vI(k)/vg (where vg refers to the group velocity of

the wavepacket in the free case) versus the strength of the barrier (figure 1(b)). Note that

information of barrier perturbation travels from the barrier to the detector with a velocity

which could exceed the group velocity of the wavepacket. Figure 2 displays features of early

arrivals with parameters chosen so as to enhance the ratio vI(k)/vg (see figure 2(b)).

3. Dynamical interpretation

The arrival times are modified by the diffraction of the wavefunction on the moving barrier:

upon hitting the barrier, the Gaussian becomes wider. When the rate of the spread is faster than

the motion in free space, earlier arrival times (relative to free motion) will be observed.

The dynamical interpretation is particularly clear by resorting to the path integral form

of the time evolution operator K(x, x′, t). The Lagrangian with the potential (2) is quadratic

and therefore K(x, x′, t) is given by

K(x, x′, t − t0) =
√

i

2π�

∂2Scl

∂x∂x′ exp
i

�
Scl(x, x′, t − t0), (11)

where Scl is the action for the classical paths going from x′ to x in time t − t0. Its explicit

expression is cumbersome; it is obtained by employing a method similar to the one used for

the time-dependent harmonic oscillator [14], namely by expressing the time integral of the

Lagrangian as a quadratic form in x and x′. This is done here by employing the Ermakov

system decomposition q(t) =
√

2Iα(t) sin φ(t).

The important message encapsulated by the propagator expression (11) is that every

point x′ of the initial wavefunction ψ(x′, t0) is carried to the point (x, t) by a classical

trajectory: a single propagating wavepacket is built on the entire set of paths whose initial

conditions lie within ρ(x, t0) (now regarded as a configuration space classical distribution).

The corresponding family of trajectories for the arrival times shown in figure 2 is plotted in

figure 3, along with the free trajectories for the same case. It can be seen that the barrier causes

the impinging trajectories to accelerate or to turn back, depending on their initial positions.

Whereas a potential barrier will typically prevent the particles from crossing, a rising barrier

will transmit a kick and hence accelerate those trajectories that are found to the right of the

barrier maximum while the barrier is rising. Earlier arrivals (relative to the no-barrier situation)

are precisely produced by these paths that arrive at some point xT far to the right of the barrier

in a shorter time than in the free case.

Hence from a dynamical standpoint the arrival times can be understood from the behavior

of classical distributions. However a wavepacket cannot be reduced to a classical statistical

distribution: it is a quantum object that diffracts on the barrier. Therefore even though the

underlying dynamics leading to early arrivals can be perfectly understood classically5, some

4 This definition emphasizes the detection time td in the barrier case relative to the velocity vg of the maximum of

the free Gaussian, keeping in mind that the maxima of the free and perturbed Gaussians move together up to times

t = tB.
5 As mentioned above, this is due to the quadratic character of the potential. For non-quadratic potentials, the

propagator is expanded beyond the first-order term (11), giving rise to a sum over paths including non-classical

trajectories (diffractive or complex trajectories).

6



J. Phys. A: Math. Theor. 45 (2012) 295301 D Home et al

Figure 3. Trajectories q(t) for the situation portrayed in figure 2 (black lines: free case; grey (red

online) lines: time-dependent barrier with k = 1/500). The initial conditions for each trajectory

are randomly chosen within the initial distribution ρ(x, t0), centered at x = −1000. The barrier

potential, maximal at t = tB, highly spreads the pencil of trajectories, resulting in the diffraction

of the wavepacket.

effects can be specifically quantum (such as in entanglement generation, as described below in

section 4). Note that the mechanism producing early arrivals in the present case is qualitatively

different than the pulse reshaping involving evanescent waves in a dispersive medium giving

rise to superluminal group velocities, see e.g. [15, 16]. Here, the diffraction on the barrier

distorts essentially the tails of the wavepacket, but otherwise there is no other significant pulse

reshaping.

4. Toward possible applications

We present in this section two illustrations implementing the early arrivals phenomenon. These

illustrations, concerning a scheme for key generation and a procedure to speed-up entanglement

between two qubits, may be considered as outlines needing further development in order to

enable the closer examination of the actual realizability of the envisaged applications.

4.1. Key generation scheme using early arrivals

We have seen above that the transmission probability for the perturbed barrier exceeds that

of the free case in a particular time interval. The detector during this time interval therefore

records more number of particles than it would have in the free case. We have also provided

an expression to measure how fast the information about perturbation of the wavepacket

travels to the detector. In order for Alice and Bob to use this effect for a key generation,

we now suppose that Alice and Bob perform the following experiment. Alice at the barrier

receives single particles, one by one, prepared in the given Gaussian state. At first, she lets the

particles move on without doing anything, and Bob at the detector, which is at a fixed location,

detects the number of particles reaching the specified location for a particular chosen instant

of time (position measurement). Then the chosen instant of time is varied, and the procedure is

repeated for many such instants, thereby generating the curve Tf (t). Alice then introduces the

barrier perturbation by choosing a particular value for the barrier strength k, which she fixes

to be the same for all particles. Bob again repeats the earlier procedure for all particles, one by

one, and in a way similar to the above is able to generate the curve Tk(t). Next, by comparing

Tf with Tk, Bob is able to obtain tc, td and hence, 	t , and then compute η using equations (8)

and (9). The whole experiment is repeated by Alice and Bob many times for randomly chosen

different values of the barrier strength k by Alice, leading to the inference in the above manner

7
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of the corresponding magnitude η(k) by Bob. A particular functional relation between k and

η(k) (say, curve 1(c)) is chosen as a key which is shared by Alice and Bob.

It needs to be mentioned that the above method of key generation is different from the

standard quantum key distribution scheme in which one element of the key is generated

by transmitting one particle. However, in order to determine to what extent such a scheme

could be secure, a more detailed analysis would be required. In particular, note that in our

scheme, a single value of η corresponding to the given value of k has to be obtained by sending

particles one after the other, thereby generating an ensemble of particles representing the whole

wavepacket. Hence, the question as to whether any intervention by an eavesdropper, such as

performing a measurement, can be detected through distortion of the relation between k and

vI is non-trivial, and for example, would depend upon the choice of the subset of the ensemble

selected for the purpose of eavesdropping. A quantitative comparison with security issues

involved in usual quantum key distribution schemes (see, for example, [18]), would obviously

be interesting, depending upon the extent to which our scheme can be comprehensively

developed.

4.2. Effect on entanglement generation

The phenomenon inducing earlier arrival times can also be employed to speed-up the

generation of entanglement between qubits mediated by a wavepacket. Note that scattering-

based strategies aiming at entangling qubits have become increasingly popular in quantum

information processing tasks [19]. Assume Alice, sitting at xA = q0 wants to send shared

information using a single-particle wavepacket to Bob, placed to the right at xB = xT > 0 and

to Charlie, sitting to Alice’s left at xC = −xT < 0. Alice creates an initial state by superposing

two Gaussians given by equation (1) with opposite mean momentum

ξ (x, t0) =
(

8m

πα2
0

)1/4

e−m[x−q0]2/α2
0 cos(p0[x − q0]/�). (12)

Bob and Charlie possess qubits, initially in the ‘off’ state |0〉B and |0〉C. We assume an effective

unitary interaction between the particle wavepacket and the qubits by which |0〉B is switched

in a very short time (relative to the other timescales of the problem) into the ‘on’ state |1〉B

provided x > xB and similarly |0〉C is switched into |1〉C for x < xC; the backreaction on the

wavepacket is supposed to be negligible. The initial total quantum state is a product state of

the initial superposed Gaussians (12) and the qubits in the off-state:

|�(t0)〉 = |ξ (t0)〉|0〉B|0〉C. (13)

The state subsequently evolves into the entangled wavepacket-qubits state

〈x|�(t)〉 =
1

N1/2
ξ (x, t)

[

θ (xB − x)θ (x − xC)|0〉B|0〉C

+ θ (x − xB)|1〉B|0〉C + θ (xC − x)|0〉B|1〉C

]

, (14)

where ξ (x, t) is the wavefunction evolved from (12), i.e. the sum of two wavepackets, one

propagating toward Bob and the other toward Charlie; θ denotes the unit-step function

and N is the normalization constant. Note that for small t, ξ (x, t) is nonzero only in the

interval xC < x < xB and |�(t)〉 remains a product state, whereas for large t, ξ (x, t)

has non-negligible amplitude for x > xB and x < xC: the qubits are entangled and

N ≈
∫ +∞

xB
dx |ψ(x, t)|2 +

∫ xC

−∞ dx |ψ(x, t)|2, that is, the sum of the transmission coefficients

(6) at xB and xC.

The wavepacket can be seen as mediating the entanglement of Bob and Charlie’s qubits.

The corresponding entanglement rate can be quantified by computing the linear entropy

8
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Figure 4. Entanglement buildup (quantified by the linear entropy SLE(t)) between Bob’s and

Charlie’s qubits following the scheme described in section 4.2, for the free case (black solid curve)

and in the presence of a transient barrier (grey (red online) dashed curve). The parameters taken

are those corresponding to the transient barrier problem displayed in figure 2 with k = 10−4, and

xA = q0, xB = −xC = 104 (in atomic units).

associated with one or the other qubit’s reduced density matrix. Starting from the total density

matrix ̺(t) = |�(t)〉 〈�(t)|, one computes first the reduced density matrix

ρq(t) =
∫

dx〈x|�(t)〉〈�(t)|x〉 (15)

associated with the entangled qubits, depending again on the transmission coefficients (6) at

xB and xC. Then by tracing over either Bob’s or Charlie’s qubit states, one obtains the density

matrix ρ(t) associated with a single qubit. The linear entropy SLE is defined as

SLE(t) = 1 − Tr [ρ(t)]2; (16)

SLE(t) vanishes for product states and here its highest value is 1/2, reached when the qubits

are maximally entangled.

Entanglement speed-up can be obtained if Alice combines the procedure we have just

mentioned with a weak barrier centered at x = 0 that is raised and lowered for a short moment

around t = tB, that is, when the part of the wavepacket sent to Bob arrives at x = 0. Then as

explained in section 2, the diffraction of the wavepacket on the barrier will result in parts of the

wavepacket reaching Bob’s qubit earlier than in the barrier-free case. The barrier must be weak

in order to ensure no appreciable part of the wavepacket traveling toward Bob is reflected.

Note that the appearance of a time-dependent barrier has no effect on the wavepacket traveling

toward Charlie.

An example of entanglement speed-up is shown in figure 4, which compares the linear

entropy SLE(t) in the free case with the linear entropy computed with identical parameters but

in the presence of a weak barrier. Significative entanglement is generated earlier than in the

free case, although the maximally entangled state is obtained at longer times than in the free

case. This is a straightforward consequence of the dynamical explanation given in section 3:

a fraction of the wavepacket is accelerated by the rising barrier, allowing for an initial faster

entanglement buildup, while a fraction of the wavepacket is decelerated by the barrier, so

that the reduced linear entropy attains its maximum later than in the free case. The fact that

entanglement—a specific quantum feature—reflects the underlying dynamics (even when the

latter is purely classical) is a result that holds well beyond the specific example studied here and

that has given rise to several investigations in the last decade including in scattering situations

(see e.g. [20] and references therein).
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5. Discussion and conclusion

In this work, we have analytically investigated the effect by which the transmission probability

of a wavepacket impinging on a transient barrier exceeds that corresponding to free propagation

for a certain interval of time. We have further introduced a scheme to quantify the magnitude

of this effect attributable to the early arrivals of particles within a small duration of time.

Although quantum mechanically this effect originates from the interaction of the Schrodinger

wavefunction with a time-dependent barrier, its dynamical interpretation can be obtained,

by using the semiclassical propagator, in terms of classical trajectories, with each trajectory

carrying a part of the diffracted wave. Here, as in other cases in which the incident wave

packet gets distorted on striking the barrier, the concept of signal velocity needs to be defined

operationally, and it can exceed the group velocity of the wavepacket [15–17]. Accordingly, we

have introduced a form of information velocity which measures the speed at which information

about the barrier perturbation propagates across the wavepacket.

Furthermore, we have suggested the possibility of this effect being used for communication

across the wavepacket. A preliminary idea of a simple scheme of information transfer has

been outlined which is based upon the one-to-one correspondence between any particular

value of the barrier strength chosen and the measured value of the magnitude of the early

arrivals. In such a scheme, whose details require elaboration in a future work, the transfer of

classical information using the quantum wavefunction is quite different from usual quantum

key generation schemes. Finally, we have presented a simple scheme by which this transmission

across a transient barrier can speed up the generation of entanglement. Further work involving

the time-dependent reflection and transmission of wavepackets from various types of transient

barriers is required for the purpose of experimental tests and applications of the effect

demonstrated and analyzed in this paper.
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