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Weak values in nonideal spin measurements: An exact treatment beyond the asymptotic regime
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We consider weak measurements (WMs) of a spin observable in quantum mechanics beyond the usual
asymptotic regime. This is done by obtaining the exact time-dependent wave functions of the measuring apparatus
for general nonideal measurements. Ideal strong measurements and the usual WM regime are obtained as the two
extreme limiting cases of our exact treatment. We show that in the intermediate regime nonideal measurements
lead to “semiweak” eccentric values that differ from the usual weak values. We further show that even in the WM
regime the exact treatment leads to a meter behavior that can be markedly distinct from the one predicted by
the usual WM formalism. We give several illustrations and discuss an application to the distinction of different
realizations of the same density matrix.
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I. INTRODUCTION

In recent times the issue of “weak measurement” (WM) in
quantum mechanics has gained significant and wide interest
in realizing apparently counterintuitive quantum effects. This
path-breaking idea was originally proposed by Aharonov,
Albert, and Vaidman (AAV) [1], who introduced a measure-
ment scenario in quantum mechanics so that the empirically
measured value (coined the “weak value”) of an observable
can be seemingly weird in that it yields results going beyond
the eigenvalue spectrum of the measured observable. Since
then, this idea has been enriched by a number of theoretical
works [2–7] and experimental works [8–16]. This novel
technique of obtaining a strange property of an observable
has several implications, for example, providing insights into
conceptual quantum paradoxes [3,4,17,18], identifying a tiny
spin Hall effect [11], detecting very small transverse beam
deflections [13], and measuring average quantum trajectories
for photons [19].

It is well known that a standard quantum mechanical
measurement requires a strong coupling in order to produce
an ideal one-to-one correspondence between the measured
system and the device state (for this reason, standard mea-
surements are often termed to be strong or ideal). In contrast,
the WM scheme, as the name suggests, assumes a very weak
coupling (so that the system state is kept grossly undisturbed)
and interfering device states (so that the coherence in the
device remains intact). To observe an effect of this weak
perturbation in the device pointer’s state, it is necessary to
suitably select a particular subensemble, which is technically
termed “postselection.” Given the initial state (known as
the “preselected” state in AAV’s terminology), any ”weak
value of an observable can be observed if the postselection
is appropriately chosen. Weak values have another unusual
property in that they can be complex. If the weak coupling
approximation is made in the position coordinate, such as
in a Stern-Gerlach (SG) setup, the real and imaginary parts
of the complex weak value correspond to the momentum
and position mean values of the postselected pointer state,
respectively [6]. In this case, if the weak value is real, the
effect can be observed in the momentum-space distribution of
the pointer state; i.e., the peak of the momentum distribution is
shifted by an amount proportional to the weak value, possibly

several times the corresponding eigenvalue of the observable in
question.

In the original AAV treatment, the WM scenario is obtained
as an approximate limiting case for weak couplings and
nearly overlapping device states, whereas strong projective
measurements pertain to the opposite limiting case. However,
between these two limiting cases there is a continuous range
of situations encompassing different regimes that have been
scarcely investigated. Recently, however, a few works [20–23]
have studied the issue of WM beyond the usual approximations
made in the AAV formalism. The specificity of our work is
that we analyze the general case of nonideal measurements
(followed by postselection) by starting from the exact solutions
of the Schrödinger equations coupling the system and the
measuring device. The standard WM regime then appears
for weak couplings and nearly overlapping meter states. But
the other “nonideal” measurement situations also display
potentially interesting effects. We show, in particular, not only
that in these regimes eccentric outcomes can be obtained,
but also that the resulting “semiweak” or “generalized weak”
values can be tuned at will, allowing the device’s pointer to
be shifted more than the weak value. We also show that it
is possible to observe dichotomic outcomes of the pointer, as
in the case of strong measurements, but with eccentric shifts,
including in situations in which standard weak values cannot
be defined. We further show that even in the standard WM
regime, some effects neglected in the AAV treatment can lead
to exact weak values markedly different from the usual WM
ones. All these features are analyzed in a simple system that
is analytically tractable: a spin-1/2 particle passing through a
series of SG setups.

The paper is organized as follows. In Sec. II we briefly
recapitulate the essence of the standard WM. In Sec. III we
introduce a particle with spin 1/2 passing through a series
of SG setups. The spatial wave packet is considered to be
the probe that measures the particle’s spin state. Rigorously
solving the coupled solutions of the system allows us to define
naturally the nonideal situation: the two limiting cases of
strong and WMs are explicitly given; the peculiar features
visible in the intermediate regime—the semiweak and the
generalized weak values—are described. Our findings are
illustrated in Sec. IV, and an application to a quantum
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FIG. 1. A series of Stern-Gerlach (SG) setups for implementing
weak measurements of the spin operator σ̂x . The three SG setups ac-
count, respectively, for the state preparation, the weak measurement,
and the postselection.

information task is also considered. Our conclusions are given
in Sec. V.

II. STANDARD WEAK MEASUREMENT SCENARIO

The entire process of the AAV WM procedure [1,3] consists
of three steps: state preparation (usually termed preselection);
a strong projective measurement for selecting a specific
subensemble known as postselection; and in between the pre-
and the postselection, a weak interaction, which is introduced
so that the system state remains virtually unaffected by this
intermediate interaction (see Fig. 1). AAV demonstrated the
entire process in terms of a series of three SG setups. Let a beam
of spin-1/2 neutral particles, say, neutrons, pass through the
SG setups. The first SG is used to prepare the spin preselected
state labeled |χin〉. The total initial wave function after the first
SG setup is �in = ψ0(x)|χin〉. The spatial part ψ0(x) is taken
to be a Gaussian wave packet peaked at the entry point (x = 0)
of the second SG at t = 0:

ψ0(x) = 1

(2πδ2)1/4
exp

[
− x2

4δ2

]
. (1)

For simplicity, the spatial part is written as being one-
dimensional: the spatial wave functions along the y and z

directions are trivial in that they are not affected by the SG
interaction given below. The initial momentum-space wave
function φ0(px) corresponding to Eq. (1) is

φ0(px) =
(

2δ2

πh̄2

)1/4

exp

(
−δ2p2

x

h̄2

)
. (2)

Neutrons having the state �in = ψ0(x)|χin〉 then pass
through the second SG setup, which is used for measuring a
spin observable, say, σ̂x . The interaction Hamiltonian is given
by H = f (t)μσ̂ .B, where B = (bx,0,0) and μ is the magnetic
moment of neutron. f (t) is a smooth function of t vanishing
outside the interval 0 < t < τ and obeying

∫ τ

0 f (t)dt = τ ,
where τ is the transit time during which the neutrons interact
with the magnetic field. The total state after the interaction can
then be written as

� ′ = e− iμbτxσ̂x
h̄ ψ0(x)|χin〉. (3)

The spatial part of the wave function can be considered in the
context of the SG setup to describe the state of the measurement
device: in an SG, the spin state is inferred from the wave

packet’s deviation, which leads the particle to be found in
the upper or lower planes when a strong measurement is
performed.

Here, instead, the magnetic field and transit time are taken
to be very small, so that the system state remains essentially
unaltered by the interaction. Then the exponential in Eq. (3)
can be expanded to first order. This is done in the original
AAV treatment by performing, after the weak interaction, a
strong projective measurement using the third SG setup. This
“postselects” the neutrons in a definite final spin state |χf 〉.
The postselection allows us to write the device state as

ψf (x) = 〈χf |e− iμbτxσx
h̄ ψ0(x)|χin〉

= 〈χf |1 − i
μbτxσx

h̄
+ o(2) − . . . |χin〉ψ0(x). (4)

Neglecting the higher order terms leads to

ψf (x) = 〈χf |χin〉
[

1 − iμbτx

h̄

〈χf |σx |χin〉
〈χf |χin〉

]
ψ0(x), (5)

which can be written as

ψf (x) = 〈χf |χin〉e−i
μbτx

h̄
(σx )wψ0(x), (6)

where

(σx)w = 〈χf |σx |χin〉
〈χf |χin〉 (7)

is known as the weak value of the observable σ̂x .
This weak value appears as a phase shift in the pointer

state’s configuration-space wave function that determines the
position of the pointer in momentum space. Taking the Fourier
transform of Eq. (6), the pointer state in momentum space can
be written as

φf (px) = 〈χf |χin〉
(

2δ2

πh̄2

)1/4

exp

[
−δ2(px − p′

x(σx)w)2

h̄2

]
,

(8)

where p′
x = μbτ . The final momentum distribution can then

be written as

|φf (px)|2 = |〈χf |χin〉|2|φ0(px − p′
x(σx)w)|2, (9)

where |〈χf |χin〉|2 is the probability of successful postselection.
Hence the final pointer position in momentum space is shifted
by an amount (σx)wp′

x , in contrast to the strong measurement
case, where the final pointer positions are shifted by ±p′

x ,
corresponding to the eigenvalues ±1 of σ̂x .

From Eq. (7) it can be seen that (σx)w can be exceedingly
large if the preselected and postselected states are nearly
orthogonal. Rescaling the momentum to px/p

′
x , we see

that the pointer displays a broad distribution centered on
(σx)w [or the real part of (σx)w, if the latter is complex],
hence possibly well beyond the ranges of the eigenvalues.
For instance, for a specific preselected state, say, |χin〉 =
| ↑θ 〉 ≡ cos θ

2 | ↑z〉 + sin θ
2 | ↓z〉, and postselected state, say,

|χf 〉 = | ↑〉z, the weak value of σ̂x is given by (σx)w = tan θ
2 .

According to this formalism, (σx)w can become arbitrarily
large as θ → π , but simultaneously the probability of this
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postselection, |〈χf |χin〉|2 = |〈↑z | ↑θ 〉|2 = cos2 θ
2 , becomes

vanishingly small (we see below, from the exact treatment,
that both of these properties are erroneous, as the limit θ → π

is well defined). The final momentum distribution (9) after
postselection can be written as

|φf (px)|2 = cos2 θ

2

(
2δ2

πh̄2

)1/2

exp

[
−2δ2

(
px − p′

x tan θ
2

)2

h̄2

]
.

(10)

Note that in deriving the above relations, we neglected the
higher order terms in Eq. (4), which is justified [2] if, for n � 2,(

μbτ

h̄

)n

|xn〈χf |(σ̂x)n|χin〉| 	 |〈χf |χin〉|,(
μbτ

h̄

)n

|xn〈χf |(σ̂x)n|χin〉| 	 μbτ

h̄
|x〈χf |σ̂x |χin〉|.

Moreover, in order to resum Eq. (5) into Eq. (6), we
need μbτx(σx)w/h̄ 	 1; finally, noting that x is effectively
governed by the spread δ, we may write the condition for the
derivation as

δ
μbτ

h̄
(σx)w 	 1. (11)

III. BEYOND THE STANDARD WEAK
MEASUREMENT REGIME

A. General remarks

The usual WM scheme, presented in Sec. II, involves rough
approximations, some of which can usually be controlled
(coupling value, width of device states); others, like the loss of
unitarity due to the asymptotic expansion, have consequences
that are more delicate to tackle within definite situations.
Moreover, there remains a continuous range of regimes
for which the approximations made in the standard WM
derivation do not hold, though the situation is still far from the
ideal strong measurement limit. These intermediate nonideal
regimes, which can be referred to as “semiweak” situations,
are considered in the present section.

We first give the exact solution for a nonideal SG, that
is, solving the coupled Schrodinger equations for a wave
packet of a spin-1/2 particle without making any specific
assumptions for the coupling strength and the device states.
We then see how semiweak outcomes are obtained when a
strong measurement is added after the neutron has emitted the
nonideal SG. A crucial quantity that we introduce is the overlap
I of the wave packets (recall that the wave packets here play
the role of the device states), which quantifies the strength of
a given measurement situation. We indeed see that I → 0
yields the strong ideal measurement regime, while I → 1
corresponds to the usual AAV WM scheme. For an arbitrary
value of I the superposition of the device states results in a
distribution yielding the semiweak values. The different types
of behavior of the pointer that can be obtained (one or several
semiweak values, eccentric semiweak values, or semiweak
values falling between the eigenvalues, exact weak values that
take into account details of the interaction Hamiltonian) are
also discussed. The illustrations are deferred to Sec. IV.

B. Neutrons passing through a nonideal SG setup:
Exact solutions

The setup is the same as the one discussed in Sec. II (see
Fig. 1). We omit the state preparation procedure and consider
the initial spin state as given. Let a beam of neutrons passing
through the second SG setup be represented by the total wave
function

�(x,t = 0) ≡ ψ0(x)|↑〉θ , (12)

where | ↑〉θ = cos θ
2 | ↑z〉 + sin θ

2 | ↓z〉 is the initial state of
the system (i.e., the spin). The spatial wave function ψ0(x)
corresponds to a Gaussian wave packet that is initially peaked
at x = 0 at t = 0, given by

ψ0(x) = 1

(2πδ2)3/4 exp

(
− x2

4δ2
+ i

pyy

h̄

)
, (13)

where δ is the initial width of the wave packet. The wave packet
moves along the +y axis with the initial momentum py (see
Fig. 1). The inhomogeneous magnetic field B = (bx,0,0)1 is
directed along the x axis and confined between y = 0 and
y = d. The interaction Hamiltonian is Hi = μσ̂ .B, where, as
above, μ is the magnetic moment of the neutron. As the wave
packet propagates through the SG magnet, in addition to the
+y axis motion, the particles gain momentum along the ± x

axis due to the interaction of their spins with the field. The
time-evolved total wave function at τ (transit time of the peak
of the wave packet within the SG magnetic field region) after
the interaction of spins with the SG magnetic field is given
by

�(x,τ ) = exp

(
− iHiτ

h̄

)
�(x,t = 0)

= αψ+x(x,τ ) ⊗ |↑〉x + βψ−x(x,τ ) ⊗ |↓〉x, (14)

where the device states ψ+x(x,τ ) and ψ−x(x,τ ) are the two

components of the spinor ψ = (
ψ+
ψ−

), which satisfies the Pauli

equation and α = 1√
2
(cos θ

2 + sin θ
2 ) and β = 1√

2
(cos θ

2 −
sin θ

2 ). Note that Eq. (14) is an entangled state between the
position and the spin degrees of freedom. The reduced density
matrix of the system in the x-basis representation can be
written as

ρs =
(

α2 αβI

αβI ∗ β2

)
, (15)

where I is the overlap

I =
∫

v

ψ∗
+x(x,τ )ψ−x(x,τ )d3x, (16)

which quantifies the weakness of the measurement. The inner
product I is, in general, complex, but here in our case I is

1This form of magnetic field is unphysical, as it does not satisfy
the Maxwell equation ∇.B = 0. We need at least another component
to make it divergence free [24]. However on average the effect of
these additional field components can be neglected under proper
circumstances, resulting in this effective field usually found in
textbooks and also employed in Refs. [1,2].
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always real and positive. The value of I can range from 0
to 1, depending on the choices of the relevant parameters,
such as the degree of the magnetic field (b), the width of the
initial wave packet (δ), and the transit time through the field
region within the SG setup (τ ). We calculate the analytical
expressions of ψ+x(x,τ ) and ψ−x(x,τ ) by solving the relevant
Schroedinger equations.

The two-component Pauli equation for ψ+x and ψ−x can
then be written

ih̄
∂ψ+x

∂t
= − h̄2

2m
∇2ψ+x + μbxψ+x, (17)

ih̄
∂ψ−x

∂t
= − h̄2

2m
∇2ψ−x − μbxψ−x . (18)

The solutions of the above two equations at t = τ upon
exiting the SG are as follows (for a detailed derivation, see
Ref. [24]):

ψ+x(x; τ ) = 1

(2πδ2)
3
4

exp

[
−z2 + (

y − pyτ

m

)2 + (
x − p′

xτ

2m

)2

4δ2

]

× exp

[
i

{
−� +

(
y − pyτ

2m

) py

h̄
+ p′

xx

h̄

}]
,

(19)

ψ−x(x; τ ) = 1

(2πδ2)
3
4

exp

[
−z2 + (

y − pyτ

m

)2 + (
x + p′

xτ

2m

)2

4δ2

]

× exp

[
i

{
−� +

(
y − pyτ

2m

) py

h̄
− p′

xx

h̄

}]
,

(20)

where � = p′
x

2
τ

6mh̄
, p′

x = μbτ , and the spreading of the wave
packet is neglected throughout the evolution.

Here ψ+x(x,τ ) and ψ−x(x,τ ), representing the spatial wave
functions at τ , correspond to the spin states |↑〉x and |↓〉x ,
respectively, with the average momenta 〈p̂〉↑ and 〈p̂〉↓, where
〈p̂〉↑↓ = (±p′

x,py,0). Within the magnetic field the neutrons
gain the same magnitude of momentum p′

x = μbτ but the
directions are such that the particles with eigenstates |↑〉x and
|↓〉x get the drift along the +x axis and −x axis, respectively,
while the y-axis momenta remain unchanged.

From these analytical expressions of ψ+x(x,τ ) and
ψ−x(x,τ ) given by Eqs. (19) and (20), it is straightforward

to compute the inner product I [Eq.(16)], given by

I = exp

(
−μ2b2τ 4

8m2δ2
− 2μ2b2τ 2δ2

h̄2

)
, (21)

which explicitly depends on the choices of the parameters b,
δ, and τ .

Now, after emerging from this nonideal SG magnet, the
neutrons represented by the entangled state given by Eq. (14)
enter another SG setup, where a strong measurement is to be
performed and the neutrons are postselected in a specific spin
state.

C. Subsequent strong measurement: Postselection and final
pointer state

For this purpose, we consider, immediately after the wave
packet exits the WM SG, a subsequent strong measurement
of the spin observable σ̂z. Knowledge of the exact solutions
allows us to treat the strong measurements and WMs on the
same footing. The approximate magnetic field in this case is
B = (0,0,b′z), and T is the time during which the interaction
occurs. A strong measurement requires the magnetic field b′
to be sufficiently strong that the spatial wave packets emerging
from this SG setup are orthogonal; i.e., the relevant inner
product, analog to Eq. (21), vanishes. If the neutrons having
the position-spin entangled state given by Eq. (14) enter the
final SG setup, then the time evolved state that exits from the
setup can be written as

�(x,τ + T ) = α√
2
ψ+x+z(x,τ + T )|↑〉z

+ α√
2
ψ+x−z(x,τ + T )|↓〉z

+ β√
2
ψ−x+z(x,τ + T )|↑〉z

+ β√
2
ψ−x−z(x,τ + T )|↓〉z. (22)

The inner products 〈ψ+x+z|ψ+x−z〉 and 〈ψ−x+z|ψ−x−z〉
at t = τ + T vanish for strong measurements. The states
ψ±x±z(x,τ + T ) can be calculated using ψ+x(x,τ ) and
ψ−x(x,τ ), given by Eqs. (19) and (20), respectively, as the
initial position wave functions. Note here that since the
nonhomogeneous magnetic field is only along the z axis,
within this SG setup, the neutrons move freely along the
two other directions. Hence the analytical forms of the states
ψ±x±z(x,τ + T ), are given by

ψ+x ±z(x; τ + T ) = 1

(2πδ2)
3
4

exp

[
−

(
z ∓ pzT

m

)2 + (
y − py (τ+T )

2m

)2 + (
x − p′

xτ

2m
− p′

xT

m

)2

4δ2

]

× exp

[
i

{
−� − �′ ± p′

zz

h̄
+

(
y − py(τ + T )

2m

)
py

h̄
+ p′

x

h̄

(
x − p′

xT

2m

)}]
, (23)

ψ−x ±z(x; τ + T ) = 1

(2πδ2)
3
4

exp

[
−

(
z ∓ pzT

m

)2 + (
y − py (τ+T )

2m

)2 + (
x + p′

xτ

2m
+ p′

xT

m

)2

4δ2

]

× exp

[
i

{
−� − �′ ± p′

zz

h̄
+

(
y − py(τ + T )

2m

)
py

h̄
− p′

x

h̄

(
x + p′

xT

2m

)}]
, (24)
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where �′ = p′
z

2
T

6mh̄
and p′

z = μb′T
Assume that we postselect the neutrons having spin state

|↑z〉; then the postselected position-space wave function is
written using Eq. (22), given by

�post(x,τ + T ) = 1√
2

[αψ+x+z(x,τ + T )

+βψ−x+z(x,τ + T )]. (25)

The states ψ+x+z(x,T + τ ) and ψ−x+z(x,T + τ ) are separable
in x,y,z and can thus be written with obvious notation
as ψ±x+z(x,T + τ ) ≡ ψ ′

±x(x,T + τ )ψy(y,T + τ )ψ+z(z,T +
τ ). Equation (25) becomes

�post(x,τ + T ) = 1√
2

ψy(y,T + τ )ψ+z(z,T + τ )

× [αψ ′
+x(x,T + τ ) + βψ ′

−x(x,T + τ )].

(26)

We see that the y- and z-dependent parts of the total wave
functions do not play any significant role in this context and
are thus integrated out. The motion along the x̂ axis within
the final SG setup is free so we can neglect the T dependence
of ψ ′

±x(x,T + τ ). Thus the final postselected pointer wave
function, depending only on x, can be written as

� ′
post(x,τ ) = 1√

2
[αψ ′

+x(x,τ ) + βψ ′
−x(x,τ )], (27)

where

ψ ′
±x(x,τ ) = 1

(2πδ2)
1
4

exp

[
−

(
x ∓ p′

xτ

m

)2

4δ2
± i

p′
xx

h̄

]
(28)

is obtained from Eqs. (23) and (24).
The corresponding momentum-space wave function is

�post(px,τ ) = 1√
2

[αφ+x(px,τ ) + βφ−x(px,τ )], (29)

where φ±x are obtained by taking the Fourier transform of
Eqs. (28), yielding, with φ0 given by Eq. (3),

φ±(px,τ ) = φ0(px ∓ p′
x)

× exp

(
− ip2

xτ

2mh̄
± ipxp

′
xτ

2mh̄
− iμ2b2τ 3

6mh̄

)
. (30)

The momentum-space solution, (29), is general in that no
restriction on the coupling constant or on the width of the
probe states hase been introduced. We can now look at the
device’s momentum distribution in different regimes, which
are characterized by the value of I .

D. Strong measurement limit: I ≈ 0

Let us now assume that we tune the relevant parameters (b,
δ, and τ ) so that I → 0. In this case the reduced density matrix
given by Eq. (15) of the system becomes

ρs =
(

α2 0

0 β2

)
, (31)

which is diagonal, implying the strong measurement limit in
that there is a one-to-one correspondence between the pointer
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FIG. 2. (Color online) The momentum distribution |�post(px ,τ )|2
[Eq. (29)] is plotted for (a) I ≈ 0 (ideal projective measurement
situation) and (b) I ≈ 1 (weak measurement situation). Values of
relevant parameters are b = 100 G/cm, τ = 1.4 × 10−6 s, and δ =
1 cm for (a) and δ = 1/50 cm for (b). The weak value is (σx)w = 16.2
for θ = 173.5◦.

state φ′
+x (φ′

−x) and the spin state |↑〉x (|↓〉x). Hence, in this
case we expect two spatially separated peaks pointing at the
eigenvalues of the spin observables σ̂x . In Fig. 2(a) we depict
the device momentum distribution given by Eq. (29), where
we find the peaks at ±p′

x .

E. Standard weak measurement limit: I ≈ 1

The WM limit is just the opposite limiting situation of
strong measurement. From Eq. (21) we can see, for example,
that for a fixed δ we can choose the other parameters, b and τ ,
such that I ≈ 1 is obtained. The reduced density matrix of the
system becomes

ρs ≈ 1

2

(
α2 αβ

αβ β2

)
;

i.e., the coherence in the system is considered to be mostly
unaffected. There is no correspondence between the system
and the device states. This leads to the usual WM scheme
proposed by AAV. Indeed, let us start with the pointer
position-space wave function given by Eq. (28), since the
coupling is between the spin and the position variable. If the
parameters b and τ are sufficiently small, the value of I could
be close to unity for a fixed δ. In this case we can neglect
the higher order terms of bτ , keeping only first order term.
We can then write the states ψ ′

±x(x; τ ) given by Eqs. (28) as
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follows:

ψ ′
±x(x; τ ) ≈ ψ0(x)(1 ± ip′

xx/h̄). (32)

In this limit Eq.(27) becomes

� ′
post(x,τ ) ≈ ψ0(x)√

2
[α(1 + ip′

xx/h̄) + β(1 − ip′
xx/h̄)]. (33)

Setting the values of α, β, and ψ0(x) and simplifying, we get

� ′
post(x,τ ) ≈ cos θ

2

(2πδ2)1/4
exp

(
− x2

4δ2
+ i

p′
xx tan θ

2

h̄

)
. (34)

The Fourier transform of Eq. (34) gives the pointer wave
function in momentum space, yielding the distribution

|�f (px)|2 ≈ cos2 θ

2

(
2δ2

πh̄2

)1/2

exp

[
−2δ2

(
px − p′

x tan θ
2

)2

h̄2

]
,

(35)

which exactly matches Eq. (10) of the standard WM formula-
tion.

F. Nonideal situations: Semiweak and exact weak values

When the overlap I lies in the intermediate range 0 < I <

1, an imperfect coherence remains in the system state. After
postselecting on a given final spin state, the pointer distribution
is obtained from Eq. (27), therefore displaying an interference
between the overlapping meter wave functions correlated with
orthogonal spin states.

The pointer behavior depends on the details of the interfer-
ence: by monitoring I , eccentric pointer shifts can be obtained
in this intermediate range. We term these resulting shifts
“semiweak” values. Depending on the resulting interference,
which can be tuned by changing the values of the parameters
(such as b, δ, and τ ), the pointer distribution can display a
single maximum, akin to the usual WM regime, with the
additional feature that this maximum does not necessarily
appear at the AAV weak value given by Eq. (7), but can
be chosen by fine-tuning the parameters. Other behaviors of
the pointer can be obtained, in particular, profiles with two
maxima, similar to the two peaks that characterize the strong
limit, but with the maxima shifted far from the eigenvalues.

Even in the usual I ≈ 1 WM regime, pointer shifts can
be obtained in cases in which the usual WM formalism does
not predict any, such as in situations in which the pre- and
postselected states are orthogonal. More importantly, when
the oscillating terms in Eqs. (28) play a role (i.e., when
the wavelength of the oscillation becomes of the order of
magnitude of the distribution width), the meter distribution
becomes significantly different from what is predicted by the
usual WM formalism. The features produced by these “exact”
weak values are illustrated below.

It is interesting to note that several recent works [20–23]
have also attempted to go beyond the usual WM formalism
in the weak regime. Wu and Li [21] took the asymptotic ex-
pansion to second order (one order beyond AAV’s derivation)
and showed that this was sufficient to treat the orthogonal pre-
and postselected states case. These results were extended in
Ref. [22], where it was shown that the asymptotic expansion

can be resummed when weak values of projectors are consid-
ered. A different but equivalent approach [20,23] follows the
early method of Sudarshan and collaborators [2], consisting
in formally expanding the preselected state in terms of the
eigenstate of the weakly measured operator. This allows us to
recover the standard WM in the limit of weak couplings. The
main difference between all these approaches and our present
work lies not only in the method employed—we explicitly
solve the full Schroedinger equation of the entire system
(measured subsystem and pointer apparatus)—but also in the
fact that, by doing so, we take into account the motion of
the system and of the pointer, generated by the respective
self-Hamiltonians. The strong, weak, or nonideal nature of the
measurement is then seen to depend on characteristics of the
full solution, not only on the coupling strength. For the WM
of spin in an SG developed here, the different parameters that
determine the nonideal character of the measurement were
encapsulated in the quantity I .

IV. ILLUSTRATIONS AND APPLICATIONS

A. Semiweak value distributions

We give here an illustration of the properties of the meter
state distributions in the nonideal regime giving rise to the
semiweak values examined in Sec. III. For definiteness the
examples given correspond to the explicit formulas given
above, involving the initial wave function, Eq. (1), with the
initial spin in state |↑〉θ , an intermediate WM or semiweak
measurement of the system (spin) observable σ̂x , and a final
postselection along |↑〉z.

1. Strong and weak limits

Consider first the strong and weak limits. A typical example
is given in Fig. 2, where the device state distributions are
plotted in configuration (x) space as well as in momentum (P )
space (recall that the only nontrivial axis is the one along x, the
WM axis). For the strong case the postselection along |↑〉z is
applied after a first strong measurement along σ̂x that couples
perfectly each wave packet (meter state) with the relevant spin
state |↑〉x or |↓〉x . In x space this yields a single broad structure
at the eigenvalue of the σ̂z measurement, whereas in P space
two peaks are visible [see Fig. 2(a)], each corresponding to
the direction of the momentum along the x axis: the strong
measurement condition perfectly correlates this momentum
with the spin state.

In the weak limit, a single peak is still visible in x space,
but in P space the two interfering Gaussians overlap almost
perfectly (I ≈ 1). The result is itself (approximately [2]) a
Gaussian, as predicted by the WM formalism, but with a
maximum displaced at the weak value p′

x tan θ
2 [see Fig. 2(b)].

The meter therefore has a broad distribution centered at a value
several times higher than the spin eigenvalue, with the single
peak pointing here at (σx)w = 16.2 for θ = 173.5◦.

2. Semiweak values

We first illustrate in Fig. 3 the generic situation as I is varied
from the ideal strong situation (I ≈ 0) to the weak limit (I ≈
1). We see that the meter distribution goes smoothly from the
strong type of behavior to the one that characterizes the weak

022122-6



WEAK VALUES IN NONIDEAL SPIN MEASUREMENTS: AN . . . PHYSICAL REVIEW A 85, 022122 (2012)

(a) (b) 

(c) (d) 

14.2

13.3

Pr
ob

ab
ili

ty
 d

en
si

ty
 

Pr
ob

ab
ili

ty
 d

en
si

ty
 

Pr
ob

ab
ili

ty
 d

en
si

ty
 

Pr
ob

ab
ili

ty
 d

en
si

ty
 

FIG. 3. (Color online) The momentum distribution |�post(px,τ )|2
[Eq. (29)] is plotted for four values of the inner product (I ), depending
on the suitable choices of the parameters. (a, d) Strong and weak
measurement situations; (b, c) semiweak measurement situations.
The weak value is (σx)w = 13.3 for θ = 171◦.

limit. Note, however, that the maximum no longer appears at
the eigenvalues or at the usual weak value, Eq. (7), but at the
semiweak values, that is, the maximal values of the distribution
obtained from Eq. (29). In Fig. 3(c), for example, the left
peak is shifted to −14.2 while the weak value is (σx)w = 13.3
[shown in Fig. 3(d)]. This semiweak value can be chosen at
will by tuning the different parameters; approximate analytical
expressions may be obtained by expanding |�post(px,τ )|2 in
terms of the relevant small parameters (τ , b, ...or a combination
thereof).

3. Exact weak values

A different feature of the exact formalism developed above
concerns the existence of a meter distribution peaked at
eccentric values in the usual weak regime (as far as the
weakness of the coupling and the meter states are concerned)
but for which the usual AAV formalism does not yield any
result. For example, when the initial and postselected states
are orthogonal the usual weak value given by Eq. (7) is
undefined. This undefiniteness stems from partially expanding
the exponential after the postselection [see Eq. (5)]. An exact
treatment does not have this problem. Figure 4 shows the
exact meter momentum distribution for orthogonal pre- and
postselected states, for parameters near the I ≈ 1 limit. In this
situation, the postselected meter state in momentum space is
given by

�post(px,τ ) = 1
2 [φ+x(px,τ ) − φ−x(px,τ )]. (36)

The analytical form of the momentum distribution near the
I ≈ 1 limit is readily obtained (up to a constant factor) from
the Fourier transform of Eq. (33) as

|�post(px,τ )|2 ∝ p2
x exp

(
−2p2

xδ
2

h̄2

)
. (37)

FIG. 4. (Color online) The momentum distribution |�post(px,τ )|2
[Eq. (36)] is plotted for the case where I ≈ 1 but the pre- and
postselected states are orthogonal—a situation in which the standard
weak value is undefined.

This distribution has two peaks at px = ±h̄/
√

2δ as illustrated
in Fig. 4. The type of feature illustrated in Fig. 4 was first
obtained theoretically in an approximate form (by neglecting
the evolution of the pointer inside the SG) by Duck et al. [2]
and, more recently, revisited in some of the works [20–23]
going beyond the standard WM (e.g., in Ref. [21] a formula
for orthogonal pre- and postselected states is obtained by
considering the interaction up to second order). Experimen-
tally the feature was observed quite early [8]. In a more
recent work [25], the electric field analog of Eq. (37) was
derived in the framework of a phase-amplification technique
using classical wave optics. Note that the exact weak value is
perfectly finite, whereas from the definition given by Eq. (7),
one might be tempted to conclude [incorrectly, as this would
violate the conditions given by Eq. (8), under which the AAV
approximation holds] that the weak value can be arbitrarily
large as the pre- and postselected states become orthogonal.

Another instance in which the “exact” weak value differs
from the one defined in the asymptotic treatment appears
when the oscillating terms of the exact solutions [Eq. (30)]
play a role. This happens when the wavelength of these
terms becomes comparable to the width of the momentum
distribution. The first example is shown in Fig. 5, where the
pre- and postselected states are identical. Then, according to
its definition, (7), the weak value should simply be given
by the average of the weakly measured observable in the
initial state. It is shown in Fig. 5 that this rule is spoiled by
the oscillating terms, which create a multiple peak structure
with eccentric maxima. By tuning the parameters entering
the exact wave function, the wavelength of the oscillating
terms can be reduced, yielding a momentum distribution
with multiple peaks, as shown in Fig. 6. The origin of the
multiple peaks is the interference between the two meter
states emerging from the second SG setup along two opposite
directions carrying the opposite phases. These phases (in
momentum space) arise because of the separation of the
two wave packets in configuration space due to the spin-
nonhomogeneous magnetic field interaction occurring along
opposite directions. This shows the necessity of the solution of
the Schrödinger equation using the full Hamiltonian instead of
taking only the interaction Hamiltonian or keeping only a few
terms of the asymptotic expansion of the interaction coupling.
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FIG. 5. (Color online) The momentum distribution |�post(px,τ )|2
[Eq. (29)] is plotted for the case where the pre- and postselected
states are identical. Values of relevant parameters: b = 0.001 G/cm,
τ = 1.4 × 10−2 s, and δ = 5 × 10−2 cm.

Note here that the average momentum, which has been the
main interest in several studies [20–23], is not necessarily
relevant when there are multiple peaks in the momentum
distribution.

B. Application: Distinguishing between “identical”
density matrices

As an illustration of the practical usefulness of the exact
scheme for weak values reported in this work, we give
here an application to a quantum information task, namely,
the possibility of distinguishing between “identical” density
matrices. Consider the following situation: Alice prepares
neutral spin-1/2 particles in some state, either ρx or ρz, and
sends them to Bob, whose goal is to guess the state. According
to elementary quantum mechanics the spin density matrices

ρx ≡ 1
2 |↑x〉〈↑x | + 1

2 |↓x〉〈↓x | (38)

ρz ≡ 1
2 |↑z〉〈↑z | + 1

2 |↓z〉〈↓z | (39)

are identical and thus undistinguishable. We must there-
fore give an additional condition: We assume that Alice
sends successive spins of alternate signs, i.e., Alice sends
either ξ = {|↑x〉,|↓x〉,|↑x〉,|↓x〉 . . .} or ζ = {|↑z〉,|↓z〉,|↑z〉,
|↓z〉 . . .}, each of the sets ξ and ζ giving rise to a specific
realization of ρx or ρz, respectively. Bob must guess as
quickly as possible, that is, by processing the lowest number
of particles, whether Alice is sending ξ or ζ .

FIG. 6. (Color online) The momentum distribution |�post(px,τ )|2
[Eq. (29)] is plotted for the case where the pre- and postselected
states are identical. Values of relevant parameters: b = 0.001 G/cm,
τ = 1.4 × 10−2 s, and δ = 10−3 cm.
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FIG. 7. (Color online) Meter distributions (in arbitrary units) for
the task described in Sec. IV 2 for strong (a), standard weak (b),
and exact weak (c, d) measurements, with the magnetic field strength
fixed in all cases at b = 0.02 G/cm and τ = 0.07 s. (a) σ̂x is measured
strongly (δ = 1 cm) and the two peaks appear at the corresponding
eigenvalues, irrespective of whether ξ or ζ is being sent. (b) The
meter distribution corresponding to ξ [dashed (blue) curve] and to ζ

[solid (green) curve] for a standard WM of σ̂x (with δ = 10−4 cm)
and a postselection along 55◦. (c) shows the same situation displayed
in (b) but with the exact WM solutions. (d) Configuration-space
meter distributions corresponding to the exact WM momentum-space
distributions shown in (c) with the same postselection angle. When
Alice launches ξ the left (green) and right (red) peaks are obtained
for |↓x〉 and |↑x〉, respectively, whereas for ζ , |↓z〉 and |↑z〉 can both
hit the left and right peaks.

With strong measurements, the best Bob can do is to
measure either σ̂x or σ̂z and examine whether two successive
measurements have identical signs. Suppose, for instance, that
Bob chooses to measure σ̂x ; the pointer displays two sharp
peaks, one positive and one negative [see Fig. 7(a)]. Then if ξ

is sent, the sign of successive outcomes will alternate, whereas
if ζ is sent, each outcome is equiprobable. So Bob’s strategy
will be to observe whether the consecutive measurements have
alternating outcomes, in which case he will conclude it is likely
that Alice is sending ξ . Indeed, denoting by k the number
of particles that have already been seen to be displaying an
alternate series, the probability of continuing with this series
for the (k + 1)th particle if ζ has been sent becomes 2−k and
decreases rapidly with k.

With standard WMs the problem for Bob is that he ignores
the preselected state: he must guess whether Alice is sending
ξ or ζ by obtaining meter distributions that are very broad in
momentum space, irrespective of the WM and postselection
Bob chooses. Typically all the meter distributions have almost-
identical profiles but different heights, which is how ξ and ζ

can be distinguished [see Fig. 7(b)]. So despite the fact that the
meter distributions will indeed be different, in practice, Bob
will need a great number of particles in order to discriminate
ξ from ζ .

However, by following the exact treatment in the nonideal
case, Bob can set (by changing the SG magnetic field
strength and passage time) the interference between the
meter states in momentum space so that the detection of
ξ and ζ result in totally different probability distributions.
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Moreover, by weakening the coupling constant, Bob can
still keep markedly different profiles in momentum space
[see Fig. 7(c)]) while obtaining nonoverlapping profiles for
the meter in configuration space. The advantage is obvious:
one has exactly the same information as the one obtained
with strong measurements [but in configuration space; see
Fig. 7(d)], and in addition, as more particles are detected the
detection curve in momentum space unambiguously reveals
whether ξ or ζ is being sent. It is crucial to note that the
two distinctly positioned peaks visible in configuration space
are a feature of the exact solutions: in the standard WM
formalism the configuration-space wave functions are identical
up to some global factor. In practice [26], each odd-numbered
result is registered separately from the even-numbered events,
and this is done for each of the two postselected states. The
procedure can be stopped when enough events are registered
so that the curves can be discriminated by employing standard
statistical tests minimizing the distance between the expected
curve and the obtained outcome [26].

V. SUMMARY AND CONCLUSIONS

In this work we have derived the exact behavior of a
measurement apparatus for arbitrary nonideal measurements.
This was done in the analytically tractable case of a spin
measurement in SG setups, for which the exact time-dependent
wave functions can be obtained. This has allowed us to

investigate the validity of the usual AAV WM formalism, both
in the intermediate regime, far from the usual WM limit, and in
the WM limit when the specific features of the system-meter
interaction are explicitly accounted for. In doing so, we have
been led to introduce “semiweak” and “exact weak” values that
describe the meter distribution and the associated eccentric
values in these circumstances (including, but not limited to,
the case of orthogonal pre- and postselected states, for which
the usual weak value is undefined).

We have also seen through our exact approach that including
the full Hamiltonian (rather than restricting the treatment to
the interaction Hamiltonian) may have crucial consequences
for the behavior of the eccentric values. In this sense, an
exact approach brings features in addition to those that can
be retrieved by the approaches in other recent work [20–23]
dealing with extending the original WM approach: It is valid
irrespective of the interaction strength and it yields fine details
due to the specificities of the interaction. On the other hand,
the practical applicability of an exact approach hinges on
the ability to solve (analytically or numerically) the full
Schrödinger equation, a task that can become difficult for
an arbitrary system. In all cases, going beyond the usual
WM formalism as well as the relevance of performing exact
calculations for a given experimental situation should be
helpful in analyzing experimental results obtained in nonideal
measurements.
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