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Entanglement and chaos in the kicked top
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The standard kicked top involves a periodically kicked angular momentum. By considering this angular
momentum as a collection of entangled spins, we compute the bipartite entanglement dynamics as a function of
the dynamics of the classical counterpart. Our numerical results indicate that the entanglement of the quantum
top depends on the specific details of the dynamics of the classical top rather than depending universally on the
global properties of the classical regime. These results are grounded on linking the entanglement rate to averages
involving the classical angular momentum, thereby explaining why regular dynamics can entangle as efficiently
as the classically chaotic regime. The findings are in line with previous results obtained with a two-particle top
model, and we show here that the standard kicked top can be obtained as a limiting case of the two-particle top.
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I. INTRODUCTION

The quantum-classical correspondence is the hallmark of
semiclassical systems. These are genuine quantum systems for
which the semiclassical expansion in the path integral propa-
gator holds (at least for some appropriately chosen dynamical
or temporal regimes). The quantum-classical correspondence
allows us to compute and interpret the properties of a quantum
system in terms of the properties of its classical counterpart [1].
This is particularly important for systems displaying a complex
dynamics, for which exact quantum computations are either
unfeasible or yield numerical results that hardly give any clues
allowing to grasp the dynamics of the quantum system.

Over the past few years, several studies aiming to apply
the quantum-classical correspondence to the understand-
ing of dynamical entanglement have been published [2–8].
Although entanglement is a distinctive quantum feature with-
out a classical counterpart, many quantum systems displaying
entanglement have a classical counterpart. The idea in these
types of studies, then, is to assess whether there is a link
between the generation of entanglement in the quantum system
and the underlying classical dynamics. Alternatively, other
studies have found it useful to employ a pseudoclassical
phase-space structure to understand the dynamical reasons
accounting for the entanglement behavior [9]. Initially it was
suggested that underlying chaotic dynamics was correlated
with higher and faster entanglement but it was later realized
that integrable dynamics could lead to equivalent or even more
efficient entanglement.

In earlier works [5,10], we have shown that the entangle-
ment dynamics did depend on classical phase-space features,
but in a specific and system-dependent way rather than in
a generic manner. Our results were obtained in a modified
two-particle kicked top, i.e., a kicked top involving explicitly
two coupled angular momenta, one for each of the two
entangled particles. This modified kicked top differs from
the standard kicked top, which is well known to be one
of the prototypical systems of quantum chaos [11]. Indeed,
the standard kicked top involves a single angular momentum
kicked by an external force whereas in the model we employed,

an angular momentum is kicked by an interaction with
the second particle, inducing a change in both particles’
angular momentum. Accordingly, the classical dynamics of
our modified kicked top is richer than the dynamics of the
standard top. Notwithstanding, it can be rigorously shown (see
below) that the standard kicked top is a limiting case of the
modified kicked top we employed in our previous studies.

In the present article, we will study the entanglement
generation as a function of the underlying classical dynamics
of the standard kicked top. Although the standard top involves
a single angular momentum, this angular momentum can be
considered as a composite angular momentum resulting from
the entanglement of several elementary angular momenta (e.g.,
qubits). Previous results [12–14] on the standard top employed
in this context suggested that entanglement generation in
the quantum top is correlated with chaos in the classical
counterpart and that in this system entanglement could be
seen as a signature of chaos. These results appear to conflict
the results we obtained with the modified kicked top. The
physical origin of entanglement surely differs as one goes
from the modified to the standard top, but the nature of
the quantum-classical correspondence is not expected to
change. We therefore investigate in this work the relationship
between entanglement generation and the quantum-classical
correspondence in order to assess to what extent entanglement
can be taken as a signature of chaos.

We will start in Sec. II by introducing the standard kicked
top, not in the usual way but as the limiting case of our
modified kicked top employed in earlier works. By doing so we
will establish the relationship between these two models both
based on stroboscopic maps. We will then describe the single
standard kicked top as a compound system (Sec. III); we will
see that the reduced linear entropy (that we will take to be the
marker of the entanglement rate) depends on the averages of
the angular momentum projections. The entanglement rate is
maximized when the sum of these averages is minimized. From
the quantum-classical correspondence viewpoint, the pertinent
variable will consist in obtaining the classical dynamics
minimizing this sum. The results are given in Sec. IV, for
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regular, mixed phase-space, and chaotic dynamics. We will
see that, generically, chaos indeed minimizes this sum, but
for appropriately chosen initial states, regular dynamics can
entangle more efficiently, and in a more controlled fashion.
We will discuss our results and conclude in Sec. V.

II. THE KICKED TOP: AN ALTERNATIVE DERIVATION

We present in this section the link between the
Rydberg molecule model, which we employed in our
previous studies [5,10,15] on entanglement generation
and the quantum-classical correspondence, and the well-
known kicked top (whose entanglement properties relative
to the underlying classical dynamics will be studied in
Secs. III–V; readers solely interested in the kicked top results
may jump directly to Sec. III). The aim of this section is to
show that the standard kicked top can be seen as the limiting
case of the Rydberg molecule model when the total angular
momentum and one of the two coupled angular momenta
become infinitely large.

A. The Rydberg molecule model: torsion and rotation of two
coupled angular momenta

1. Historical introduction

Electronic states of atoms or molecules are called Rydberg
states, as opposed to valence states, when an outer electron
moves far away from the remaining ionic core. These states
form electronic series which converge toward the ionization
limit of this outer electron.

The starting point of the quantum analysis of such states
was the quantum defect theory (see, e.g., the review article by
Seaton [16]), established first for atoms. It was shown that,
due to the nonzero spatial extension of the ionic core, the
levels near the ionization limit follow the hydrogen Rydberg
law En = −Ry/(n + d)2, with only a constant (or nearly so)
shift d of the principal quantum number n, entitled quantum
defect. Quantum defect theory was extended to multichannel
quantum defect theory (MQDT) for the case where there are
several series which converge to nearby states of the ion and
interact strongly. This theory depends only on a small number
of parameters, basically one quantum defect per interacting
series. Practically all is solved with matrices whose size is
the number of series, while “brute force” methods would in
principle try to diagonalize a matrix which contains an infinite
number of levels for each series.

This theory was extended to molecules by Fano [17,18].
There are always many interacting series corresponding to the
rotational states of the ionic core. Indeed the slow velocity of
the core rotation leads to a splitting of the rotational states of
the core which is of the same order of magnitude as the splitting
between high-lying electronic Rydberg states. The novelty was
the implications of the anisotropy of the core. The effect of this
anisotropy on the ionic potential decays faster with distance r

than the point charge 1/r Coulomb potential, at least as 1/r2

or 1/r3. Fano showed that the key point of the analysis is
the existence of a cut-off distance r0. Below this distance the
motion of the outer electron is tightly bound to the direction
of the ionic core; above it the two become independent. Many

detailed studies have followed on moderately excited Rydberg
states of molecules, see, e.g., reviews in Refs. [19,20].

2. Phase space: Dimension and coordinates

For a diatomic molecule this problem is in principle a three-
body problem, the two ions which constitute the molecular
core and the Rydberg electron. After separation of the center
of mass motion it depends in configuration space on six
parameters, which can be chosen as the coordinates R,θM,ϕM

of the relative position M of the two ions and the coordinates
r,θe,ϕe of the Rydberg electron (all in the laboratory frame
moving with the center of mass). The two coupled angular
momenta we will study here are the angular momentum of the
core, N, associated with the angles θM,ϕM , and the angular
momentum of the Rydberg electron L, associated with the
angles θe,ϕe (see Fig. 1).

The problem for our purpose is simplified by two ap-
proximations [21,22]; R and the modulus L of L are kept
as constants. The first amounts to neglecting the vibrational
motion of the core and is frequently fairly well valid, since
vibrational quanta are much greater than rotational quanta of
the core. The second supposes that the isotropic part of the
non-Coulomb short range part of the Rydberg electron-ionic
core interaction potential is much greater than its nonisotropic
part. Its validity is often acceptable.

With these two approximations, the dimension of the
classical phase space is decreased from 2 ∗ 6 by 2 ∗ 2 to
8. Taking into account the conservation of the total angular
momentum J and its projection JZ on the laboratory axis
decreases further this dimension by 2 ∗ 2, i.e., the dimension
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FIG. 1. (a) The laboratory frame, in which the core (depicted
by the the two atomic nuclei) rotates approximately freely. M̂
is along OZQ. (b) The collision (or molecular) frame; it is the
preceding OXQYQZQ rotated around OZQ so the new OX is along
N. During the collision L rotates around OZQ by an angle δϕL. The
“free” rotation appears in this frame as a rotation of L around the
new OX.
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is equal to four. Two classical phase-space coordinates can be
chosen as r and its conjugate momentum pr . For reasons which
come from the quantum treatment below, the other two can be
chosen either in the collision frame as the projection LZQ

of L

onto the OZQ = M̂ axis and its conjugate angle, the angle of
the projection of L into the OXQYQ plane with the OXQ axis
(known as π/2 plus the ascending node in classical mechanics
treatises [23]), or in the laboratory frame as the modulus N of
the momentum of the ionic core and its associated angle ϕN ,
which precise value is given in Ref. [22], [Eq. (A11)].

3. Quantum solution: MQDT as a quantum map

The usual manner of obtaining the solutions with MQDT is
described in the appendix. It involves introducing two different
angular bases, the collision basis and the free rotation basis.
The former gives the correct physical description when the
electron is near the molecular core (and therefore collides),
whereas the latter corresponds to a large radial distance
between the electron and the core (which then rotates freely
in the laboratory frame). For our present purposes, it is,
however, more meaningful to envision the quantum problem
as a quantum map. Indeed, the quantization condition given by
Eq. (A10) obtained from MQDT can be rewritten as [22,24]

Ê t Ê |A�〉 = Î|A�〉, (1)

with the complex symmetric matrix Ê defined by

Ê = exp(iπν̂) Û exp(iπμ̂), (2)

where ν̂ and μ̂ are diagonal matrices with diagonal elements
νN and μ� and Û is a unitary matrix given right below. This
equation has the following interpretation [22]. |A�〉 is the set
of angular coefficients in the “collision basis” (A1) of the wave
function at the perigee of the trajectory. Equation (1) means
that at the quantized energy this wave function goes back onto
itself when applying in order (from right to left) the following
operations:

(1) a diagonal matrix with element exp(iπμ�) =
exp(−iπk/(4πL) �2) [see Eq. (A4)], i.e., (half) a quadratic
torque in the collision frame with an angle of π , a strength of
k/(4πL), and an operator L2

ZQ
, which brings the wave function

from perigee to outgoing r = r0,
(2) a matrix ÛN� which transforms from the “collision

basis” (A1) labeled by � to the “free rotation basis” (A2)
labeled by N ,

(3) a diagonal matrix with element exp(iπνN ) ∼
exp(−iπ Te

Tc
N ), (plus a constant phase) to first order in N [22],

where Te and Tc are respectively the average periods of the
electron orbit and of the free rotation of the core [see also the
derivation below Eq. (5)], i.e., approximately (half) a linear
rotation with angle π , a strength Te/Tc, and an operator N ,
which brings the wave function onto its apogee, and then
applying the same operators in reverse order to bring the wave
function back to its perigee. This means that at quantized
energies the wave function is invariant (not merely unitary as
at other energies) under the action of a matrix Ê t Ê which is a
quantum Poincaré Map [22] in angular space from perigee to
perigee.

Notice then that by multiplying Eq. (1) to the left by
exp(iπμ̂) and reorganizing the result gives the equivalent
equation

exp(i2πμ̂) Û t exp(i2πν̂)Û
∣∣Ao

�

〉 = Î
∣∣Ao

�

〉
, (3)

with

Ao = exp(iπμ̂)A (4)

which means with the same reasoning that the Ao
� are the

coefficients of the angular wave function at the outgoing r = r0

position in the collision basis and that this wave function at
quantized energy E is invariant by the quantum Poincaré map
given by Eq. (3). This is the equation we will employ to derive
the kicked top model.

4. Classical model: the stroboscopic map

The preceding quantum theory has a classical counterpart
[21] which is a succession of two different motions [see
Fig. 1(b)]:

(a) When the electron is far from the core, the motions
are not coupled, due to the rotational invariance of the
Coulomb potential. The electron freely rotates around its
angular momentum L fixed in space, and the core directed
along M rotates around its angular momentum N perpendicular
to it. When seen in the molecular reference frame, which OZQ

axis is M̂, the rotation of L is in retrograde direction. This is the
reason of the “anomalous commutation rules of momentum in
molecular basis” [25]. The angle of rotation of this apparent
motion at angular velocity ωc = ∂(BN2)/∂N = 2BN during
the time of an orbit of the Rydberg electron, which has
angular velocity ωe = ∂[−1/(2ν2

N )]/∂νN = 1/ν3
N is δϕL =

−2π Te/Tc = −2π × 2BNν3
N . This is approximately only a

uniform rotation of the average angle δϕL = −2π × 2BJν3
J

when L � J , so that N , which varies between J − L and
J + L varies only slightly.

(b) During the collision the motions are coupled. L rotates
around M̂ by an angle δϕL = −2π∂μ�/∂� = k�/L. Since
the total angular momentum J = N + L (which are both
well defined in classical mechanics during the collision) is
conserved, this relative motion of L around M̂ entails a
“recoil” of the molecular reference frame whose precise value
was computed in Ref. [21].

B. The kicked top derived from the Rydberg molecule model

1. Evolution operator and wave functions

The preceding model is similar to the standard kicked top
in that it displays a succession of quadratic torques around
M̂ separated by approximately pure rotations for L around the
perpendicular axis N. But the nonexactness of the pure rotation
and the recoil motion (modifying N) during the collision step
entails extra complexities (and extra interests arising from
the explicit coupling of the angular momenta L and N). We
now establish that for L � J , our Rydberg molecule model
becomes a standard kicked top. Hence the kicked top can be
considered to be a special limit of MQDT.

To this end we first compute νN [see Eq. (A9)] for a generic
value of N as a function of the middle νJ , for N = J , which
is related to total energy E by E = BJ (J + 1) − 1/(2ν2

J ). νJ
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can be considered as another measure of total energy, in fact
a linearized function of energy with average unity spacing in
each N series (“unfolded” in the language of random matrix
theory [26]).

νN = νJ√
1 + 2Bν2

J (N − J )(N + J + 1)

= νJ√
1 + Te

Tc

N−J
νJ

N+J+1
J

→ νJ + Te

Tc

(J − N ), (5)

with the average ratio of electron to core periods being
given by

Te

Tc

= ωN=J

ωe

= ∂E/∂J

∂E/∂νJ

= 2BJ ν3
J . (6)

The limit in Eq. (5) supposes that Te

Tc
and L (thus approximately

N − J ) remain constant, while νJ → ∞. Thus according to
Eq. (6) we must have 2BJ → 0, which we suppose satisfied by
B → 0 and J → ∞, thus also N ∼ J → ∞ and (N + J +
1)/J → 2. The important result is the linearity of νN with
respect to J − N = ML, which varies between −L and +L.
Indeed, in this limit ML is, to first order in L/J , equal to the
projection of L onto J (obtained by developing N2 = |J −
L|2 = J 2 + L2 − 2 L · J). J being invariant can be without
loss of generality taken as laboratory OZ axis so ML is the
projection of L onto the laboratory OZ axis.

Using the asymptotic formula for Clebsch Gordan coef-
ficients (with the conventions of Edmonds (Ref. [27], A2.1)
when two angular momenta go to infinity, the remaining being
finite, the elements of the transformation matrix become

UML� = (−1)L+�DL
−ML−�(0,π/2,0)

= (−1)L+�DL
�ML

(0,π/2,0), (7)

where the last expression makes use of (Ref. [27], Eqs. (4.2.5)–
(4.2.6)). Here D is the “standard” [28] or “passive” [25,27]
rotation matrix, i.e., when rotating the reference frame with
Euler angles α,β,γ while keeping fixed the quantum system:

DL
mm′ = 〈Lm|e+iγLze+iβLy e+iαLz |Lm′〉. (8)

Explicit expressions are given in Refs. [25,27,28], and we
have written fast and accurate recursive programs for large
momenta. Notice the + sign and angle ordering opposites to
the “active” point of view [29] (rotating the spin in a fixed
reference frame), which is more common in kicked top works.
The passive point of view is more “natural” in molecular
works [25].

Inserting the expressions (5) and (7) into Eq. (3) and moving
the common factor exp(2iπνJ ) to the right-hand side results
in the quantization condition

∑
�

e−ik �′2
2L DL

ML�′(0,−π/2,0)e2iπ Te
Tc

MLDL
�ML

(0,π/2,0)
∣∣Ão

�

〉

= e−2iπνJ δ��′
∣∣Ão

�

〉
, (9)

where we have defined the elements of |Ão
�〉 by

Ão = (−1)J−�Ao. (10)

This change of sign takes into account that the molecular wave
function contains a core part multiplying the Rydberg electron
part [Eq. (A1)]. We want an equation for the Rydberg electron
only, and for L � J the core parts for different � differ only
by this sign.

To interpret the quantization condition, it can be noted that
for a “passive” rotation, the transformation

B̃o
ML

=
∑
�

Ão
�DL

�ML
(0,π/2,0) (11)

yields the coefficients of the outgoing wave function in a
frame rotated around OY by π/2 from the OZ axis (see, e.g.,
Ref. [25], Eq. (58.7)], that is the OX axis. Alternatively, notice
that Eq. (9) is an eigensystem of equations with eigenvalue
exp(−2iπνJ ) for a unitary map consisting from right to left: a
frame rotation from OZ to OX, a pure rotation with parameter
Te

Tc
along the new axis, back to original axis system (giving

overall a free rotation along OX), and, finally, a quadratic
torque with parameter k along the original OZ axis. Therefore
this is exactly the evolution equation from kick to kick for the
standard kicked top [30]. Notice only the plus sign in the
pure rotation term, which appears as the consequence of
the apparent rotation in “wrong” sense when viewed in the
molecular frame. Conversely, one can say that this sign is
correct in the laboratory frame and that two other minus signs
are a consequence of the map being described in the molecular
rotating axis system.

III. ENTANGLEMENT IN A SINGLE KICKED TOP

A. The kicked top as a compound system

A kicked angular momentum J of the standard top can
be considered as resulting from the composition of 2J

spin-1/2 subsystems so J = ∑2J
n=1 sn [12]. The states |JM〉,

corresponding to the total angular momentum J and its on
projection M on the z axis being well defined, are thus
constructed by superposing the product states of the individual
spins as required by the standard rules of angular momenta
addition. The spins sn must be in a state symmetric by
permutation in order to generate the Hilbert subspace for the
states of the kicked top. Then the average for an individual
spin sn projection on the axis i = x,y,z is identical for each n

and related to the averages 〈Ji〉 of the total angular momentum
through

〈
sn
i

〉 = 〈Ji〉
2J

. (12)

We will be interested in the bipartite entanglement between
an individual spin s and the remaining subsystem comprising
the 2J − 1 other spins (in principle other entanglement
measures such as pairwise entanglement or multipartite entan-
glement could also be considered). The average dynamics for
s are obtained from the density matrix for the kicked top ρ(t)
by taking the partial trace over the remaining spins. However,
this step does not need to be done explicitly given that any
spin-1/2 density matrix can be written as

ρs(t) = 1

2
+ 2

∑
i

〈si〉 si, (13)
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so the expansion coefficients are actually encoded in the
averages. This is a considerable simplification relative to the
Rydberg molecule top.

Note that in the Rydberg molecule entanglement results
from a dynamical process (a collision) involving two distinct
particles. This dynamical process has a classical counterpart
and our past works [5,10] have focused on the generation of
entanglement as a function of the classical dynamics induced
by the collision. In the kicked stop instead entanglement has
a geometrical origin (the addition of the individual angular
momenta of the spins) that lacks a classical counterpart. Our
concern, as was the case in previous studies [12,13], will be
to monitor the entanglement rate that changes due to the kicks
received by the total angular momentum J. The dynamics
of J, that is, the dynamics of the kicked top, has a well-known
classical counterpart that can be linked to the entanglement
rate with the help of Eqs. (12) and (13) as detailed in the
following.

B. Entanglement generation and the quantum-classical
correspondence

1. Linear entropy

We will quantify entanglement by computing the linear
entropy S2(t) associated with the reduced density matrix
defined by

S2(t) = 1 − Trρ2
s (t). (14)

For a pure state ρ2
s = ρs and S2 vanishes, whereas for a

maximally mixed qubit S2 = 1/2. By plugging Eqs. (12)–(13)
into Eq. (14), we have

S2(t) = 1

2
− 1

2J 2
(〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2). (15)

Hence entanglement depends on the averages of the kicked
top angular momentum projections; entanglement is maximal
when all these averages vanish.

2. Coherent states

Angular momentum coherent states [31] are the most
suitable choice in order to investigate the quantum-classical
correspondence in the kicked top and have consequently been
employed from the early works onward [11]. These coherent
states, given in terms of the angular momentum eigenstates by

|θ,φ〉 =
(

1 + tan2 θ

2

)−J J∑
M=−J

(
2J

J − M

)1/2

×
(

tan
θ

2
eiφ

)J−M

|JM〉 (16)

are localized on the sphere, and in the present context they
present the additional advantage of yielding an initial product
state. Indeed, from the property

〈θ,φ| Ji |θ,φ〉 = Ji, (17)

if ρ(t = 0) = |θ0,φ0〉 〈θ0,φ0|, we then have 〈Ji(t = 0)〉 = Ji ,
resulting in S2(t = 0) = 0.

The most straightforward way of representing a coherent
state and its ensuing evolution on the sphere is through the

use of a Husimi distribution, which is precisely defined as the
coherent state representation of the density matrix. For the
standard kicked top in state |ψ〉 this is simply given by

h(θ,φ) = |〈θ,φ |ψ〉|2 . (18)

When |ψ〉 is itself a coherent state |ψ〉 ≡ |θ0,φ0〉 the Husimi
distribution is given by the overlap of the coherent states

|〈θ,φ|θ0,φ0〉|2 = cos4J

[
χ (θφ,θ0φ0)

2

]
, (19)

where χ is the angle between the directions (θ,φ) and (θ0,φ0).
This gives a distribution localized on (θ0,φ0) with an angular
spread inversely proportional to J .

In the rest of this work we will choose an initial coherent
state centered on (θ0,φ0) at t = 0 and monitor the entanglement
generation by computing S2(t) that depends on the averages
of the angular momentum projections through Eq. (15).

3. Classical dynamics, distributions, and averages

The classical dynamics of the kicked top is well known [11];
it undergoes a transition to chaos because of the competition
of the linear and quadratic motions along two perpendicular
directions. There are thus two different regular regimes, when
one of the two competing motions is zero. Indeed, prompted
by previous studies in the Rydberg molecule, we can (instead
of taking the linear kick as zero) consider a “resonance”
situation, when the kicks induce an exact full global turn of
the sphere. Figure 2 displays the two limiting situations. The
resonance situation is shown in Fig. 2(a): The only effective
kick is the quadratic one around OZ, leading to trajectories
circular around OZ, irrespective of the strength of the coupling
k, which gives only larger fractions of a turn at each kick
when it increases. In the last panel on the right the only
effective motion is the linear kick, leading to trajectories
circular around OX. Going off resonance and then decreasing
the coupling makes the transition between the two limits by
orbit bifurcations. When increasing the coupling chaos appears
along the separatrix leading to situations of the type shown in
Fig. 9 below.

Several aspects of the quantum-classical correspondence
in the kicked top have been investigated [30,32]. Here we
will be interested only in comparing the quantum averages
〈Ji(t)〉 to the corresponding classical averages J̄i(t), when
the initial quantum distribution is the coherent state |θ0,φ0〉
and its classical counterpart is a distribution of particles
centered on (θ0,φ0) and distributed on the sphere according
to the right-hand side of Eq. (19). For very short-time scales
the classical and quantum averages are expected to be the
same, though for longer times in typical cases at best a
similar qualitative behavior can be obtained when the statistical
averages are averaged out on relevant time scales in order to
smooth out interference effects (such as quasiperiodic quantum
revivals when the underlying classical dynamics is regular or
the random superpositions when the underlying dynamics is
chaotic).

Our interest in the quantum-classical correspondence in the
present context is to assess whether the configurations (kick
strength, relative rotational and torsional frequencies, initial
state position) leading to efficient entanglement generation
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FIG. 2. Poincaré surfaces of section. Displays the transition by bifurcations between the two regular limits, exactly at resonance for any
coupling k (left), fully off resonance with small coupling (right). (a) Te = 1.000, k = 1, first going off resonance: (b) Te = 1.001, k = 1,
(c) Te = 1.010, k = 1, (d) Te = 1.050, k = 1, and then decreasing the coupling: (e) Te = 1.000, k = 0.35, (f) Te = 1.000, k = 0.1. An
hyperbolic point on +OX appears at (b) and disappears at (e) with a different topology. Going below resonance instead of above resonance
exchanges the forward and backward parts of the sphere. When increasing the coupling in the situation shown in (d), chaos appears as usual
along the separatrix, leading, e.g., to the situation of Fig. 9 for k = 5.

in the quantum top can be related to different dynamical
regimes of the classical top. For these purposes, a numerical
comparison of the linear entropy [Eq. (15)] and of the
corresponding classical expression

C2(t) = 1

2
− 1

2J 2

(
J̄ 2

x + J̄ 2
y + J̄ 2

z

)
(20)

is sufficient. We can further expect that the similar behavior
of S2 and C2 is due to the similar behavior of the classical
and quantum angular momentum averages. Contrarily to the
situation of genuine two-particle systems (in particular in our
modified top), here C2 is totally unrelated to a measure of
the nonseparability of phase-space distributions that could
classically play the role of S2 as a marker of classical mixtures
[33]. Intuitively, it can be anticipated that starting from a
localized state on the sphere, chaotic dynamics will tend to
scatter the initial distribution over the entire sphere, leading
to vanishing or small J̄i for the three axes. This will lead to
a maximization of C2(t) and should correspond to maximal
entanglement generation.

IV. RESULTS

We will compute numerical results for the quantum and
classical tops with J = 10. This moderate value of the angular
momentum is sufficiently low as to envisage the possibility of

Z 

X 

FIG. 3. (Color online) Surface of section at “resonance” (see
text), which has the same aspect for any k.

an experimental realization while already displaying the main
features of the quantum-classical correspondence. We keep to
the conventions introduced in Sec. II (i.e., free rotation around
the OX axis and torsion along the OZ axis).

A. Regularity at “resonance”

In the Rydberg molecule, resonance refers to the electron
period Te being an integer multiple of half the core period
Tc (half is due to the symmetry of the core; Krönig’s
symmetry [34]). This situation has observable consequences,
appearing as clear zones in the spectrum [21] and achieves high
entanglement generation when the dynamics is regular [10]. In
the standard kicked top limit, the free rotation becomes trivial:
The classical dynamics is always regular (irrespective of k) and
constrained to remain on the initial circle, while increasing k

leads to an arbitrary separation between successive points on
the circle. The corresponding surface of section is displayed
in Fig. 3.

Let us take k = 0.1 and an initial distribution centered in
(θ0,φ0) = (π/2,0) at the intersection of the x axis with the
sphere (orange dot in Fig. 3). The entanglement rate is shown
in Fig. 4. We see that the linear entropy rises slowly and
monotonically until it reaches its maximal value of 1/2. The
classical quantity C2(t) follows strictly the same behavior. This
behavior is due to the effect of the torsion on the distribution:
In Fig. 5 we have displayed the short-time evolution of the

S
2(

t)

t (kicks)

FIG. 4. (Color online) The linear entropy as a function of time
when the initial state is a coherent state centered on (π/2,0) (resonant
case, k = 0.1).
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(a)

(d)

(b) (c)

(e) (f)

FIG. 5. (Color online) Evolution of the quantum Husimi distribu-
tion (top row) and the analog classical distribution (bottom row). The
plots show the short-time evolution of the distributions for times
corresponding to the rise in S2(t) seen in Fig. 4 (resonant case,
k = 0.1). The initial coherent state centered on the bright (yellow) dot
in (a) and its classical counterpart in (c) is subjected to the torsional
motion resulting in a spread of the distribution on a strip on both sides
of the equator. The coloring reflects the intensity of the distribution,
which is higher at the center of the distribution [red (light gray)] and
decreases on the fringes [blue (dark gray)].

quantum (upper plots) and classical distributions. The initial
coherent state, shown in Fig. 5 moves to the left on the upper
half of the sphere and to the right on the lower half of the
sphere. This ensures that both 〈Jy(t)〉 and 〈Jz(t)〉 keep their
initial value of 0. 〈Jx(t)〉 on the other hand evolves from the
initial value 〈Jx(t = 0)〉 = J to 〈Jx(t)〉 = 0 as the distribution
stretches and encircles the sphere along the equator.

This feature is readily understood by looking at the
evolution of an initial classical distribution corresponding
to the coherent state (bottom row of Fig. 5): the particles

t (kicks)

S
2(

t)
C

2(
t)

FIG. 6. (Color online) (Top) Evolution of the linear entropy
shown in Fig. 4 for longer times. (Bottom) The analog quantity
C2(t) for the corresponding classical system shows the same behavior,
due to the quantum-classical correspondence for the average of the
projection Jx .

t (kicks)

S
2(

t)

FIG. 7. (Color online) S2(t) for the “resonant” case and k = 10
(the initial state is the same coherent state as in Fig. 4).

far from the center of the distribution spread faster than
those near the center and the first ones reach the opposite
side of the sphere while the latter are still close to (θ0,φ0).
After a few kicks the distribution becomes approximately a
uniform strip around the equator during which time J̄x � 0
and C2 � 1/2. For longer times the distribution relocalizes on
the opposite side (π/2,π ) (this is a purely classical effect) with
J̄x almost equal to −J and spreads again. The corresponding
behavior of S2(t) for longer times is shown in Fig. 6, along
with C2(t).

Note that the time averaged entanglement rate before
the first relocalization is extremely high, S2 ≈ 0.46 (for
longer times partial relocalizations proliferate and the average
decreases to S2 ≈ 0.43). It is interesting to compare with the
case k = 10. The entanglement evolution is shown in Fig. 7;
S2(t) reaches the maximal value of 1/2 in only a couple of
kicks, but periodically drops to significantly lower values (the
time average is S2 ≈ 0.43 identical to the k = 0.1 case).

B. Mixed phase space

Let us now investigate the entanglement generation for the
mixed phase situation Te = 0.95 and k = 5 (see the classical

t (kicks)

S
2(

t)
S

2(
t)

(a)

(b)

FIG. 8. (Color online) S2(t) for the case Te = 0.95, k = 5, when
the initial coherent state is chosen to lie in the chaotic sea (a) or in
the central regular region (b) on the points shown on the surface of
section in Fig. 9.
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(a) 

(d) 

(b) (c)

(e) (f) 

0

max 

FIG. 9. (Color online) Evolution of a classical distribution for the
case Te = 0.95, k = 5. The gray intensity [yellow to red coloring
(light gray to dark gray)] reflects the weight of the distribution as
shown in the legend. (a)–(c) The initial distribution is the classical
analog of the coherent state centered on the dot “1” lying in the
chaotic sea [whose linear entropy was plotted in Fig. 8(a)]. (a) The
initial situation, (b) the evolution after 15 kicks, and (c) the evolution
after 75 kicks. (d)–(f) Same as the above with the initial distribution
being the analog of the coherent state centered on the dot “2” lying
in the regular region, also visible in (a) [the corresponding linear
entropy was plotted in Fig. 8(b)]. (d) The initial situation, (e) the
evolution after 4 kicks, and (f) the evolution after 75 kicks (most of
the evolution follows clockwise an elliptical motion and returns near
the initial point).

surfaces of section in Fig. 9). We first take an initial state lying
in the chaotic sea (Fig. 9, top panel). The evolution of S2(t)
is shown in Fig. 8(a). The linear entropy reaches its maximal
value of 1/2 after only a few kicks, but strong dips keep the
time averaged value over the first 1000 kicks to S2 ≈ 0.40. The
evolution of the corresponding classical distribution is shown

t (kicks)

S
2(

t)

FIG. 11. (Color online) S2(t) for the case Te = 0.90, k = 15
corresponding to a classically chaotic phase space.

in Figs. 9(a)–9(c): The distribution quickly spreads over most
of the chaotic sea, that nevertheless only covers a part of the
available phase space.

Let us now take (θ0,φ0) centered on a point lying in the large
regular region as indicated in Fig. 9 (lower panel). The linear
entropy is shown in Fig. 8(b). It immediately rises to S2 = 0.45
and then oscillates wildly with a time average of S2 ≈ 0.40.
An inspection of the behavior of 〈Ji〉 shows that 〈Jy〉 and
〈Jz〉 display quasiperiodicities typical of quantum revivals in
regular systems, whereas 〈Jx〉 follows on average the behavior
of the classical average J̄x (see Fig. 10). The evolution of the
classical distribution, shown in Figs. 9(d)–9(e), indicates that
most of the distribution stays within the island of regularity but
spreads along the lines in the surface of section. The spreading
is not perfectly uniform but the approximate symmetry of the
distribution suffices to reduce significantly the averages J̄i ,
which in turn increases C2(t) to values similar to the case
when the classical distribution explores the chaotic sea. Note
that in these two cases the time-averaged entanglement rate is
exactly the same.

t (kicks)t (kicks) t (kicks)

t (kicks)t (kicks)t (kicks)

<
J x

>

<
J y

>

<
J z

>

J x J y J z

FIG. 10. (Color online) The averages of the angular momentum projections Ji(t) for a kicked top with Te = 0.95 and k = 5 are plotted for
the quantum top (top row) and the corresponding classical top (bottom row) when the initial distribution is in the regular region.
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C. Chaotic phase space

For Te = 0.90 and k = 15 there are no more islands of sta-
bility and the stroboscopic map is chaotic. The entanglement
rate is shown in Fig. 11, rising in a couple of kicks to the
maximum bound. The time average of the linear entropy is
S2 ≈ 0.47. The quantum and classical averages of the angular
momentum projections 〈Ji(t)〉 and J̄i(t) oscillate around zero
with a small but far from negligible amplitude (about ±2),
thereby explaining the dips visible in the linear entropy.

V. DISCUSSION AND CONCLUSION

In our previous studies regarding the correspondence
between entanglement generation and the underlying classical
dynamics in Rydberg molecule top [5,10], we had found that
the linear entropy was correlated with the classical diffusion in
regions of phase-space leading to inelastic scattering between
the angular momentum of each of the two particles. Our
conclusion was that chaotic classical dynamics tended to
favor inelastic scattering but was by no means a necessary
condition, given that regular dynamics could achieve in certain
conditions more efficient inelastic scattering (resulting in
higher entanglement in the quantum system).

In the limiting case yielding the standard kicked top in
which the single angular momentum is regarded as a collection
of entangled spins, the correlation variable is considerably
simpler: It only involves the sum of the angular momentum
projection averages. The linear entropy given by Eq. (15) has
a direct classical counterpart C2(t) given by Eq. (20). Chaotic
dynamics tends to maximize C2(t) as the initial delocalized
distribution spreads all over the sphere. However, we have seen
that regular dynamics can also achieve high values of C2(t) by
taking advantage of the symmetry of the evolving distributions.
In the regular “resonant” case (Fig. 4) the time averaged
entanglement before the first relocalization is equivalent to that
of the entirely chaotic top of Fig. 11; actually contrarily to the
chaotic case, in the resonant kicked top C2(t) sticks for a period
of several hundred kicks to its maximal value of 0.5 without
any dip. Hence the resonant top is an interesting candidate to
control and achieve the highest degree of entanglement (the
main drawback being the slow rise, which may conflict with
decoherence scales in practical applications).

The mixed phase-space top also shows interesting prop-
erties: The linear entropy when the initial state lies in the
classically regular or chaotic regions shows a similar behavior,
although the underlying classical dynamics differs radically,
as portrayed in Fig. 9. The initial classical distribution in the
chaotic sea mostly spreads within the available phase-space
region, inducing a rapid rise in C2(t) (which is not maximal
because a large portion of the sphere has regular features).
For the regular initial distribution case the spread takes place
essentially within the regular region. The averages shown in
Fig. 10 indicate that J̄y and J̄z are not zero (as they would be
for a uniform distribution) but oscillate instead with a small
amplitude for J̄z and a larger one for J̄y . Still, given that J̄x itself
oscillates around its small initial value, the resulting C2(t) is
large (of the same order of magnitude as when the distribution
was confined to the chaotic sea). Note that the oscillations of
〈Jy〉 and 〈Jz〉 in Fig. 10, that are typical of recoherences and

revivals when the corresponding classical regime is regular,
cancel out when summed in the expression of S2(t) and are
therefore not visible in the entanglement rate. Here instead
the time dependence of S2(t) in Fig. 8(a) (initial state in the
classically chaotic region) displays an aspect reminiscent of
recoherences.

The present findings do not disprove earlier results [12–14]
on chaos and entanglement in the kicked top in the sense
that generically regular classical dynamics will tend to be
correlated with lower quantum entanglement than when the
classical dynamics is chaotic. Notwithstanding, we have given
explicit illustrations in the kicked top indicating that this
generic behavior is not universal. The reason is that the
linear entropy is correlated through the quantum-classical
correspondence to the quantity C2(t) introduced above, which
in turn depends on the classical averages. C2(t) does not
depend simply on the global dynamical regime but on the
details of the initial distribution and on its specific dynamical
evolution. In the examples we have given high values of
C2(t) were obtained for distributions evolving through regular
dynamics by appropriately choosing the localization of the
initial distribution. Note that this feature can be enhanced by
choosing multiply localized initial distributions (e.g., a sum of
a couple of coherent states each centered on a different point
on the sphere) so that the ensuing regular dynamics minimizes
the averages entering C2(t) or S2(t). We therefore conclude
that as was already seen on other systems [2,4,7,8,10], general
claims linking chaos and entanglement in the standard kicked
top should be made with care, as they are not universally valid.

Another point worth mentioning concerns the dependence
of the results on J . Indeed, it was recently established [15]
for the Rydberg molecule top that increasing L while keeping
the classical dynamics constant induces a qualitative change in
the behavior of the linear entropy. This is important in order to
understand the semiclassical regime given that 1/L gives the
scale of the effective Planck constant h̄eff of the system. In the
kicked top, however, increasing J is tantamount to increasing
the number of particles 2J − 1 entangled in a bipartite way
with a single spin, without affecting in any way the dynamics
of the total kicked angular momentum (except for the fact that
the initial distribution covers as J increases a smaller area on
the unit sphere).

To sum up, we have introduced the standard kicked top
as the limiting case of our two-particle kicked top modeling
Rydberg molecules employed in earlier works and investigated
dynamical entanglement in the standard top as a function of
the underlying classical dynamics. By linking the marker of
the entanglement rate to a classical function depending on the
angular momentum projection averages we have seen that the
entanglement generation in the quantum kicked top depends
on the specific details of the underlying classical dynamics
rather than depending generically on the global properties of
the classical regime.

APPENDIX: RYDBERG MOLECULE:
QUANTUM SOLUTIONS

The solutions of the quantum problem are obtained by
expressing the wave function in terms of two different angular
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bases in order to take into account the short-range phase shifts
(determined in the region near the core) and the asymptotic
boundary conditions (for the radial variable going to infinity).
The two expressions are matched at some radial value r = r0

for which both decompositions are valid (r0 lying actually near
the core).

r < r0 collision or molecular basis. In this region the
Rydberg electron is tightly bound to the core by a strong
anisotropic potential, so we have ordinary molecular diatomic
eigenfunctions (Hund’s case (b) in molecular nomenclature
[34]), where only the total angular momentum J = N + L
is conserved (but not separately L and N) so the good
quantum numbers are its modulus J , its projection onto the
OZ laboratory axis JZ = MJ , and its projection onto the axis
of OZQ = M̂ of the core JZQ

= LZQ
= �. The last equations

suppose that the core itself has no angular momentum along its
own axis, i.e., is in a � state, so the only angular momentum
along the axis M̂ is that of the Rydberg electron. To be definite,
we choose the conventions of the original work of Fano [17],
namely

(a) the (quantum) molecular reference frame is obtained
from the laboratory reference frame by a rotation of Euler an-
gles ϕM,θM,0 (with the “quantum” convention that the second
rotation is around the intermediate OY axis) [25,27–29] and

(b) there is no extra overall phase factor
so the angular part of the basis wave functions is

X
(LJ )
�,MJ

(θ ′
e,φ

′
e,M̂) = YL

� (θ ′
e,φ

′
e)

√
2J + 1

4π
DJ

�MJ
(0,θM,ϕM ),

(A1)

where θ ′
e,ϕ

′
e are the polar angles of the Rydberg electron in the

molecular frame and where the D are given in Eq. (8).
r > r0 Coulomb or laboratory or free rotation basis. In

this region the interaction potential is approximated by a
pure Coulomb 1/r potential which is rotationally invariant.
The angular momenta of the core N and of the electron L
are separately invariant in laboratory space, as is their sum the
total angular momentum J. The angular part of the basis wave
functions is thus obtained by adding the two partial angular
wave functions with a Clebsch-Gordan coefficient:

�
(LJ )
N,MJ

(θe,φe,M̂) =
∑
�MN

〈L�,NMN |LNJMJ 〉YL
� (θe,φe)

×
√

2N + 1

4π
DN

0MN
(0,θM,ϕM ), (A2)

where the first index of DN is 0 because the core is in a
� state.

Quantization is obtained by demanding that the wave
function go to zero at both ends r → 0 and r → ∞.

Inner region r <= r0. For a full-fledged solution, the radial
equation is integrated outwards from r = 0 to r = r0 with the
full anisotropic potential. This is done for each value of the
total energy E and each value of the good quantum numbers,
which in this range are according to Eq. (A1) L,J,�,MJ .
In very serious cases one takes into account that for a very
short range the interaction is more complex than a mere
potential. In any case at r = r0 the radial equation reduces to a
second-order equation in the isotropic 1/r Coulomb potential,
which local solutions are known. They are a linear combination

of the regular and irregular solutions at origin r = 0 of this
problem as

f�(r) = [s(Ee,r) cos(πμ�) + c(Ee,r) sin(πμ�)] , (A3)

where Ee is the Rydberg electron energy (not the total energy
E). It depends on only one parameter μ�, which depends
itself on �,L,J (but not MJ ). It depends also on Ee, but very
slightly so for highly excited levels, because near r = r0 the
attractive Coulomb potential is much greater than the splitting
of the rotational energies of the core, which are of the order of
the splitting of the higher-energy electronic levels which tend
to zero at the ionization limit [16,17]. Frequently, instead of
computing μ� by radial integration, it is taken as a parameter
to be adjusted to experiments. Due to the symmetry of the core
by reflection on the molecular axis (Kronig’s symmetry [34]),
it must be a quadratic function of � [21]. The simplest case is

μ� = − K

4π
�2 (A4)

plus an unimportant constant, where K is a classical parameter
defined below. This is what we do always in this article.

Outer region r >= r0. In this region up to ∞ the solution
of the radial equation is of the same form as Eq. (A3), but here
the good quantum number is N instead of �, so it writes

fN (r) = [s(Ee,r) cN + c(Ee,r) dN ] . (A5)

Furthermore, here Ee is known as Ee = E − BN (N + 1),
where B is the rotational constant of the core, according to
standard molecular conventions [34].

Matching at r = r0. These two solutions are two devel-
opments of the same wave function on two different angular
basis. Matching involves an overlap matrix

X
(LJ )
�,MJ

=
∑
N

�
(LJ )
N,MJ

Û
(LJ )
N� , (A6)

which is proportional to a Clebsch-Gordan coefficient [17]:

Û
(LJ )
N� = 〈L − �,J �|LJN0〉(−1)J−N+�, (A7)

Fano [17] gives also an extra symmetrization on ±� due to
the symmetry of the potential by reflection onto the M axis.

Quantization. It is obtained by demanding that the growing
Coulomb solution at r → ∞ be zero, which is obtained if
energy E is such that Eq. (A5) reduces to [16]

fN (r) ∝ − cos(πνN ) s(Ee,r) + sin(πνN ) c(Ee,r), (A8)

where νN is the principal quantum number of the electron in
channel N given in atomic units by

E = BN (N + 1) + Ee = BN (N + 1) − 1

2ν2
N

. (A9)

The final quantization set of equations is
∑

� ÛN� sin[π (νN + μ�)]A� = 0 ; N = J − L · · · J + L.

(A10)

The standard way to solve it is to look to zeros of the preceding
determinant (and thus nonzero values of the coefficients A�)
while varying total energy E and thus νN and possibly μ�

which depend on E.
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