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Entanglement in the classical limit: Quantum correlations from classical probabilities

A. Matzkin
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We investigate entanglement for a composite closed system endowed with a scaling property which allows
the dynamics to be kept invariant while the effective Planck constant h̄eff of the system is varied. Entanglement
increases as h̄eff → 0. Moreover, for sufficiently low h̄eff the evolution of the quantum correlations, encapsulated,
for example, in the quantum discord, can be obtained from the mutual information of the corresponding classical
system. We show this behavior is due to the local suppression of path interferences in the interaction that generates
the entanglement.
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I. INTRODUCTION

Entanglement is a distinctive feature of quantum mechan-
ics, “the one that enforces its entire departure from classical
lines of thought” [1]. Its understanding has tremendously
progressed in the last decade, due essentially to a vast amount
of work regarding the construction and properties of entangled
qubits in view of possible applications in quantum information
[2]. In a more general context, any dynamical interaction
between quantum particles leads to entanglement, which
stands as a formidable obstacle to account for the emergence
of the classical world. Explaining the unobservability of
entanglement in the classical limit is one of the aims of the
decoherence program [3].

Somewhat more modestly, several recent works [4–10]
have studied in semiclassical systems the link between
the generation of entanglement and the dynamics of the
corresponding classical system, including in experimental
realizations [11]. The numerical and analytical results obtained
so far indicate that the entanglement dynamics in quantum
systems having a classically chaotic counterpart sharply differs
from those whose classical counterpart is regular, though this
difference is dependent on the specificities of the considered
systems (types and strengths of the coupling, choice of initial
states, etc.). It has been argued [12,13] that a proper under-
standing of the connection between the classical dynamical
regime and entanglement hinges on employing systems in
which the same physical process generates the dynamics
in the classical system and entanglement in its quantum
counterpart.

An intriguing question studied in this work concerns the
behavior of entanglement in these systems when the typical
actions of the system grow with respect to h̄. Then the
size of the Hilbert space increases and the quantum-classical
correspondence improves. Moreover, if the system dynamics
can be kept invariant while the actions increase, an effective
Planck constant h̄eff can be defined and entanglement can be
studied as h̄eff → 0. We will see that entanglement indeed
increases with the size of the Hilbert space, in agreement with
previous findings on entangled Bose-Einstein condensates
[14]. Maybe more surprisingly for sufficiently low h̄eff is
that the evolution of the entanglement measure is given by
probabilities obtained from the classical dynamical evolution,
irrespective of the dynamical regime.

We start by expounding in Sec. II the quantum system
employed as well as its classical counterpart, insisting on
the invariance properties which allow fixed dynamics to be
studied while varying h̄eff . We then compute in Sec. III
entanglement for different values of h̄eff in the quantum system
and investigate the link between entanglement and the classical
probabilities (in particular, the classical mutual information).
We then discuss (Sec. IV) the meaning of our results, since
it appears that as h̄eff → 0 the quantum information encoded
in the pure state density matrix becomes indiscernible from
the classical information contained in a mixed density matrix
yielding the same reduced dynamics

II. MODEL: A SCATTERING SYSTEM

A. Quantum model

Let us consider bipartite entanglement generated by re-
peated inelastic scattering of two particles. To set the model,
let us assume a light structureless particle and a heavy rotating
particle, modeled by a symmetric top with angular momentum
N and energy EN = N (N + 1)/2I , I denoting the moment
of inertia. The scattering potential is taken to be a contact
interaction so that the light incoming particle receives a
kick when it hits the rotating top. The conservation of the
total angular momentum T = N + J, where J is the light
particle angular momentum, imposes that after the collision
the rotating top is left with an angular momentum N ′ obeying

T − J � N ′ � T + J, (1)

where we have assumed J ′ = J . The probability of the
transition N → N ′ is obtained from the scattering matrix
elements |SNN ′ |2. Finally, to account for repeated scattering
we need an attractive long-range field between both particles;
we assume the particles have opposite electric charge. Note
that this model can be seen as a two-particle extension of the
standard kicked top well-known in quantum chaos [11,15].

Starting from an initial product state

|ψ0〉 ≡ |F−
0 (ε̄0)〉|N0〉, (2)

where |F−
0 〉 depicts an incoming wave packet of the light

particle with mean energy ε̄0 traveling toward the rotating
top in state |N0〉, entanglement is generated as soon as the first
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collision takes place. The outgoing wave function is then given
by the superposition∑

N

SNN0 |F+(εN )〉|N〉, (3)

where the dependence of ε on N is due to the conservation
of energy, εN = E − EN , with E = ε̄0 + EN0 being the total
energy. The scattered wave packets are later turned back by
the attractive field and are treated as newly incoming waves.
The pure state density matrix

ρ(t) = U (t,t0)|ψ0〉〈ψ0|U+(t,t0) (4)

is obtained by writing the evolution operator U in terms of the
scattering eigenstates of the Hamiltonian

|ψ(E)〉 =
∑
N

Z−
N (E)|F−(εN )〉|N〉

+
∑
NN ′

Z−
N (E)SN ′N |F+(εN ′)〉|N ′〉, (5)

where Z−
N are coefficients obtained by applying the asymptotic

boundary conditions for closed channels, as is usually done
in quantum defect theory [16]. Note that working with
closed scattering channels introduces a slight non-Hermitian
character to the wave functions [17] that must be taken into
account in the numerical computations.

The maximal number of entangled states is given by the
number of scattering channels n. This number is obtained from
Eq. (1) as n = 2J + 1. The amount of entanglement will be
estimated through the entropy of the reduced density matrix.
We employ the linearized form

H (t) = n

n − 1

[
1 − TrNρ2

N (t)
]
, (6)

which becomes a good approximation for large n. ρN (t) is
the reduced density matrix obtained by tracing over the light
particle’s degrees of freedom. Note H = 1 for a maximally
entangled state.

For convenience, from this point forward we set t0 = τε/2,
where τε is the period of the mean energy orbit; then the
collision times are t = qτε with q being an integer. The system
is initially in the product state (2), i.e., in a well-defined channel
N0 with H (t0) = 0. After the first (q = 1) collision the system
is left in a superposition of states, each of the states being
characterized by a symmetric top with an angular momentum
N and a light particle with the corresponding energy εN .
Entanglement is therefore generated and H (t) increases.

B. Classical model

The classical version of the model can be formally obtained
by employing the semiclassical link [18,19] between the
deflection angle φ produced by the torsional motion and the
eigen-phaseshifts δ of the S matrix. In the top’s reference
frame, each kick rotates J by an angle

φ = kJ⊥/J = ∂δ/∂J⊥, (7)

where J⊥ is the projection of J on the unit axis N̂⊥
perpendicular to N, and k is the strength of the kick. A given k

corresponds, via the semiclassical relation, to a given S matrix,
i.e., SNN ′ = SNN ′ (k).

The classical orbit of the light particle between two
scattering events induces a rotation of J around N by an angle
2πτε/τN , where τN is the top rotation period. A surface of
section is obtained by plotting the position of J after each
kick [see Figs. 1(b) and 3]. The crucial observation is that the
surface of section depends only on k and on τε/τN : N,J , and
T (which are action variables) can be increased at will, say
by division by h̄eff (a dimensionless constant smaller than 1),
but the dynamical map stays constant provided E and I are
adjusted accordingly. For a long-range central field this also
implies dividing the radial action Wr of the light particle by
the same constant h̄eff .

The classical evolution analog of the quantum problem
exposed above is obtained by first discretizing the classical
configuration space. This is done by identifying on the
Poincaré surface of section the regions corresponding to the
quantum density matrices |N ′〉〈N ′| for the n available quantum
states: we cut the sphere along the N axis into n slices of width
1/n, each slice being centered so that the projection J‖ on the
N̂‖ axis corresponds to integer values of N ′ according to the
relation

J‖(N ′) = T · N̂‖ − N ′, (8)

obtained from the conservation of the total angular mo-
mentum. Overall we thus have n intervals 
N ′ = [N ′ −
1

2n
,N ′ + 1

2n
], with N ′ being an integer varying within

the bounds given by Eq. (1). For a definite classical
system the value of N ′ is obtained by finding the in-
terval 
N ′ to which J‖(N ′) belongs. Thus the classi-
cal distribution corresponding to the initial density matrix
|N0〉〈N0| is represented on the sphere by the ring centered
at J‖(N0) = T · N̂‖ − N0. The light particle initial distribution
is the same Gaussian employed in the quantum problem; the
role of this distribution is to give a statistical weight, depending
on the initial energy of the light particle, to each J lying in the
initial ring.

In order to follow the evolution, the position of each J
lying within the initial distribution is computed after each
collision (implying a torsion of J around N̂⊥ during the kick
and a rotation of J around N during the orbital excursion).
The classical probability pcl

N (t = qτε) of finding the top with
an angular momentum in the interval 
N = [N − 1

2n
,N + 1

2n
]

after q kicks is obtained by counting the relative number of
vectors J whose projection falls in the corresponding interval.
The probabilities of finding the classical system with the top
angular momentum having the value N (i.e., in the interval

N ) after the first kick is given by the transition probability
pcl

N (τε) = P cl(
N0 → 
N ). The classical probabilities after q

kicks are obtained by recurrence from the relation

pcl
N (qτε) =

∑
N ′

P cl(
N ′ → 
N )pcl
N ′[(q − 1)τε]. (9)

From these probabilities one can define the quantity

M(qτε) = n

n − 1

[
1 −

∑
N

[
pcl

N (qτε)
]2

]
(10)

that can be understood equivalently as the linear entropy
for the total system or as the (linearized) classical mutual
information, quantifying the amount of mixing induced by
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FIG. 1. (Color online) (a) The entanglement rate as a function
of the number of kicks is given for quantum systems characterized
by k = 0.25 and h̄eff = 0.5,0.25,0.1,0.01 (from bottom to top). The
dashed lines result from applying the scaling relation (11) to the
three upper curves. (b) Top: The black ring encircling the N axis
is the initial classical distribution of J with J = 10 (corresponding
to the quantum case with h̄eff = 0.1), centered on N0 = T = 50.
Bottom: The distribution at t = 10 kicks (black dots), showing a
spread. The surface of section for k = 0.25 is shown in yellow (light
gray).

the kicks among the n slices of the discretized classical
problem (by doing so the integral over N is separated as∫ T +J

T −J
· · · dN = ∑


N

∫

N

· · · dN ).

III. ENTANGLEMENT AND CLASSICAL PROBABILITIES

A. Entanglement as h̄eff → 0

We have noted above that the classical dynamics, as it
is reflected in the stroboscopic map, is left invariant if all
the actions are divided by a small constant provided τε/τN

is left unchanged. This property holds for any value of the
coupling k. For the quantum mechanical system, multiplying
the quantum numbers N,J, T , and the radial quantum phase
counterpart [20] of the radial action Wr by the common factor
1/h̄eff 	 1 is tantamount to studying the limit h̄ → 0 without
modifying the dynamics.1 Indeed, dividing these quantum
numbers by h̄eff can also be seen as multiplying h̄ by h̄eff (while
leaving these numbers unchanged), amounting to introducing
an effective Planck constant h̄eff × h̄. Then making h̄eff → 0
allows investigation of the dynamics in the semiclassical
regime, in which the quantum evolution is known to be
driven by the underlying classical dynamics [21]. Note that
the number of channels n (proportional to N ) also scales with
1/h̄eff .

Figure 1(a) displays the entanglement evolution for the
quantum two-particle kicked top with k = 0.25 for different
values of h̄eff (we employ atomic units and set h̄ = 1). The
light particle’s initial distribution is a Gaussian wave packet
localized far from the symmetric top with its mean initial

1Recall that in general most systems do not have this scaling
property; increasing the quantum numbers leads to a different
dynamical behavior.

momentum directed toward it. The entanglement increases
dramatically as h̄eff decreases, despite the fact that the initial
state takes a smaller relative area on the sphere. To first order,
this is a consequence of the similarity transformation: on
the one hand ρN (t) is by definition a convex combination of
projectors |N〉〈N |, and on the other hand in the semiclassical
approximation the projection of ρN (t) on the unit sphere
(at kick times t = qτε) covers the same area irrespective
of h̄eff .

Let m be the number of projectors |N〉〈N | (out of total of
n) projecting in this area for some h̄eff and m′ that number
for another choice of h̄

′
eff < h̄eff . Then m/n = m′/n′ from

which it follows that for situations corresponding to the
maximal entanglement (uniform distribution in that region)
there is a simple scaling relation for the purity 1 − H ,
yielding

H ′(t) = 1 − h̄′
eff

h̄eff
[1 − H (t)]. (11)

As expected entanglement increases with the number of
available quantum states.

B. Entanglement and classical mutual information

Figure 2(a)–2(d) shows in the left panel the entanglement
evolution as given by H (t = qτε) for a choice of different

FIG. 2. (Color online) For chosen values of the coupling k and
initial state, each row shows on the left-hand side entanglement
evolution as computed from the entropy H (t), and on the right the
mutual information M(t) of the corresponding classical counterpart.
The time t is computed at the discrete kick times t = qτε . The
parameters are J = 100,T = 500 (corresponding to h̄eff = 0.01 for
the quantum system), and (a) k = 1,N0 = 402; (b) k = 1,N0 = 430;
(c) k = 0.01,N0 = 498; and (d) k = 10,N0 = 460.
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FIG. 3. (Color online) Classical evolution and surfaces of section
for the parameters corresponding to the plots of Fig. 2. (a)–(c) For
k = 1 (mixed phase-space), (a) gives the initial distributions for N0 =
402 [blue (gray) ring] and N0 = 430 (black ring); (b) displays the
distributions after ten kicks; (c) at t = 25. (d) Position of the initial
distribution defined by N0 = 498 for k = 0.01 (regular dynamics).
(e), (f) Distributions for k = 10 (mostly chaotic phase space) and
N0 = 460 at t = 0 [(e)] and at t = 5 kicks [(f)].

system parameters (the coupling k and the initial state are
varied) all corresponding to h̄eff ≈ 1/100, two orders of
magnitude smaller than the hard quantum case h̄eff ≈ 1 (which
is the typical value for qubits), but still considerably larger
than typical values characterizing classical actions. (Note
that quantum computations for density matrices become very
demanding as h̄eff decreases, since the dimension of the
Hilbert space increases linearly.) The right panel in each
plot shows M(qτε) obtained from the classical probabilities
through Eq. (10).

The good agreement between H (t) and the time-dependent
classical probabilities holds for classically chaotic and reg-
ular regimes alike. In particular, the absence of an os-
cillating behavior for the linear entropy corresponding to
a classically regular regime is noteworthy. The classical
surfaces of section corresponding to the parameters (a)–(c)
of Fig. 2 are plotted in Fig. 3. Recall that the spread
of the distribution along the N‖ axis accounts for the
variation of M(qτε), and hence for the evolution of the
entanglement.

C. Linking entanglement with classical probabilities

The results shown in Fig. 2 indicate that entanglement can
be quantified by means of classical probabilities. Actually, we
expect this behavior to be generic for semiclassical systems
that undergo a loss of phase coherence. This is indeed the first
ingredient by which the classical M(qτε) can account for H (t).
The second ingredient is the semiclassical approximation
itself that allows expression of operator matrix elements in
terms of classical quantities (the action and the density of
paths). For the system under consideration we start by writing
Eq. (5) in the form |ψ(E)〉 = ∑

N BN (E)|F (εN )〉|N〉, where
|F 〉 is a standing wave obtained by combining the |F±〉 and
BN (E) ≡ ∑

N ′ SNN ′Z−
N ′ (E)ei[W PO

r (εN )−π]/2, and Wr is the
radial action of the classical periodic orbit in the attractive

field. Then Eq. (4) takes the form2

ρ(t = qτε) =
∑
NN ′

|N〉〈N ′|e−i(EN −EN ′ )t

×βN (t)β∗
N ′(t)|F (ε̄N )〉〈F (ε̄N ′)|, (12)

with

βN (t) =
∑
N ′

SNN ′

[∑
E

e−iεN tZ−
N ′ (E)〈ψ(E)| ψ0〉

]

× ei[W PO
r (εN )−π]/2. (13)

(Keep in mind εN = E − EN when taking the sum.)
The reduced density matrix is readily derived as
ρN (t = qτε) = ∑

N |N〉〈N |pN (t), with

pN (t = qτε) =
∣∣∣βN

[
t + τε

2

]∣∣∣2
=

∣∣∣∣∣
∑
N ′

SNN ′ζ−
N ′ (t)

∣∣∣∣∣
2

.

(14)

ζ−
N ′ (t) is defined by the term between large brackets in Eq. (13)

(i.e., by excluding the phase term in the sum). |ζ−
N ′ (t)|2

represents the probability on the incoming channel N ′ just
before the collision, whereas |∑N ′ SNN ′ζ−

N ′ |2 is the weight
of the outgoing wave right after the collision (t = qτε); in
the semiclassical limit this is the same as the weight |βN |2
at the apogee half a period later.3 It follows that ζ−

N (qτε) =
pN [(q − 1)τε]. Finally we recall [18] that in the semiclassical
regime the S-matrix elements are given to first order in h̄ by

SNN ′ = ANN ′eiSNN ′ /h̄ with

|ANN ′ |2 = P cl(
N ′ → 
N ), (15)

and SNN ′ is the classical action. (The boundary conditions
for the conjugate momenta obey pθ (t → −∞) = N ′ pθ (t →
+∞) = N .) In a typical quantum regime, the off-diagonal
terms in Eq. (14) produce an oscillating interference pattern
that dominates the behavior of the linear entropy. However, as
SNN ′/h̄ → ∞ these terms oscillate wildly, while the ampli-
tudes ANN ′ are of the same order of magnitude. As a result
these off-diagonal terms are suppressed and Eq. (14) becomes

pN (t = qτε)

=
∑
N ′

P cl(
N ′ → 
N )pN ′[(q − 1)τε]. (16)

Comparing with Eq. (9) and given that the initial conditions
are identical in the quantum and classical problems, we
see that provided the approximations employed hold, the
entanglement entropy H (t = qτε) becomes identical to the
mutual information M(qτε) of the corresponding classical

2We assume that the standing-wave dependence on the energy
is weak and take the average energy ε̄N within each channel, an
assumption that holds only for radial positions around the classical
outer turning point and thus at times τε(q + 1/2).

3Formally the τε/2 time shift is obtained by applying the radial
boundary conditions to Eq. (13) and then expanding W PO

r (εN ) around
ε̄N in |βN |2.
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system given by Eq. (10), thereby explaining the numerical
results displayed in Fig. 2.

D. Quantum discord and classical probabilities

A remarkable consequence of the present results concerns
the classical values taken by quantifiers of quantum correla-
tions. For example, the quantum discord D(ρ) [22], widely
employed in the context of qubit density matrices, measures
the quantum information that can only be extracted by joint
measurements on both subsystems. D(ρ) vanishes if the state
has only classical correlations. Here D(ρ) is simply given
by H (t), hence by the classical mutual information M(t).
Put differently, the quantum information contained in the
entangled state, which would be the information gained by
an observer making a measurement (for example, measuring
the light particle’s energy εNm

projects the top to the rotational
state |Nm〉), is given by the ignorance spread arising from the
dynamical evolution of the corresponding classical system.

Hence as the classical limit is approached the quan-
tum correlations grow, but concurrently, they become
increasingly better approximated by statistical distribu-
tions of the corresponding classical system. Let ρCC(t) =∑

pcl
N |N〉〈N ||F (ε̄N )〉〈F (ε̄N )| denote the density matrix con-

taining only classical correlations. The quantum discord is
therefore D(ρCC) = 0. The reduced density matrices obtained
from ρ and ρCC become identical as h̄ → 0. Moreover,
the coherences (in the “pointer basis”|F (ε̄N )〉|N〉) of typical

two-particle observables would lead to interference patterns
with vanishing (and therefore undetectable) wavelengths [23].
In this sense ρ(t) cannot operationally be distinguished from
ρCC(t): the effective behavior of the quantum system (that
remains highly entangled) becomes classical, and the degree of
entanglement can be inferred from the probabilities generated
by the evolution of the corresponding classical system.

IV. CONCLUSION

To sum up, we have investigated entanglement evolution
when the entanglement is generated by a dynamical localized
interaction in a quantum system having a well-defined classical
counterpart. The system has an invariance property that
allows increasing actions of the system without modifying
the dynamics. We have seen that entanglement increases,
irrespective of whether the underlying dynamics is regular or
chaotic, as typical actions grow relative to h̄. The quantum
correlations are then given by the mutual information of
the corresponding classical system. This was explained as
resulting from the fact that the diagonal approximation holds
in the semiclassical regime for sufficiently low values of h̄eff .
When this regime is obtained, although the system is highly
entangled, it cannot be distinguished from a classical mixture.
The present results could contribute to a better understanding
of the role played by quantum information in the classical
limit.
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