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Abstract Square billiards are quantum systems complying with the dynamical
quantum-classical correspondence. Hence an initially localized wavefunction
launched along a classical periodic orbit evolves along that orbit, the spreading of
the quantum amplitude being controlled by the spread of the corresponding classical
statistical distribution. We investigate wavepacket dynamics and compute the corre-
sponding de Broglie-Bohm trajectories in the quantum square billiard. We also deter-
mine the trajectories and statistical distribution dynamics for the equivalent classical
billiard. Individual Bohmian trajectories follow the streamlines of the probability
flow and are generically non-classical. This can also hold even for short times, when
the wavepacket is still localized along a classical trajectory. This generic feature of
Bohmian trajectories is expected to hold in the classical limit. We further argue that
in this context decoherence cannot constitute a viable solution in order to recover
classicality.

Keywords Quantum-classical correspondence · Bohmian mechanics · Classical
limit · Square billiard

1 Introduction

The de Broglie-Bohm (BB) theory of motion is generally regarded as the main alter-
native to standard quantum mechanics (QM). The main achievement of the theory in
the non-relativistic domain is to deliver an interpretative framework accounting for
quantum phenomena in terms of point-like particles guided by objectively existing
waves along deterministic individual trajectories [1]. Although the formalism does
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not give predictions going beyond those of QM, it is often argued that BB should
be favored because of its interpretational advantages stemming from the ontologi-
cal continuity between the classical and the quantum domains. Thus, the so-called
‘Bohmian’ trajectories followed by the quantum particle should be regarded as ob-
jectively real as the trajectories of classical mechanics [2], without the need to make
a cut between the descriptions of reality at the classical and the quantum levels [3, 4].

The aim of the present work is to investigate Bohmian trajectories in square bil-
liards and contrast them with the trajectories of the corresponding classical system.
A square billiard is the two-dimensional version of the particle in a box problem,
which was the example employed by Einstein in his criticism of Bohm’s rediscov-
ery of de Broglie’s pilot-wave [5]. The interest of square billiards is that in terms
of the quantum-classical dynamical correspondence, the quantum mechanical prop-
agator is constructed from classical trajectories. Hence the quantum dynamics of
a time-dependent wavefunction is readily understood from the underlying classi-
cal dynamics—each point of the wavefunction follows a classical trajectory. On the
other hand Bohmian trajectories are generically markedly different from their clas-
sical counterpart: the Bohmian trajectories propagate by following the probability
flow, which results from the interference of several bits of the wavefunction, each of
which propagates by following a classical trajectory. There is no criterion or limiting
process (involving high energies, macroscopic size, etc.) that will make the Bohmian
trajectories resemble or tend toward those of the classical billiard for a closed system.

Thus, although having BB trajectories irremediably different from the classical
ones in a closed system may not be a problem in itself, we will argue that when a
quantum system displays the fingerprints of classical motion, this creates difficulties
in view of the advantages traditionally attributed to the BB interpretation. We will
further contend that the way that is generally favoured [6] in achieving the classical
limit from Bohmian trajectories, based on the decoherence resulting form the inter-
action of the system with its environment, suffers from a lack of consistency: we will
question, in view of the quantum-classical correspondence, whether requiring local-
ized and non-spreading wavefunctions is the correct way to define the classical limit
for the BB interpretation.

We will proceed as follows. We will first give in Sect. 2 a brief account of the
classical square billiard, introducing the trajectories and the propagation of classical
statistical ensembles. Section 3 will deal with the quantum square billiard, focusing
on the propagation of initially localized wavepackets. We will then (Sect. 4) give a
brief overview of the de Broglie-Bohm theory and display the Bohmian trajectories
for the wavepackets previously shown in Sect. 3. The results as well as their impli-
cations regarding the classical limit will be discussed in Sect. 5 and a summary with
our conclusions will be exposed in Sect. 6.

2 The Classical Square Billiard

2.1 Classical Trajectories and Periodic Orbits

A square billiard is a two dimensional box in the (x, y) plane containing a particle,
which moves freely except for the specular bounces produced when it hits one of the
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walls. Let E = (p2
x + p2

y)/2m be the total energy of the particle and L the length of
one side of the square. Let (x0, y0) denote the initial position of the particle. The
classical trajectory followed by the particle is readily obtained by integrating the
equations of motion (it is convenient to unfold the square box by propagating the
trajectory in free motion beyond the wall and then fold back the trajectory to the
original square [7]). There are two types of orbits: either the particle retraces the
trajectory—one obtains a periodic orbit (PO)—, or else the trajectory covers entirely
the billiard. Since the momentum is conserved, the condition for a PO is that the
trajectory appears closed in the (x, y) plane, which is possible if

px

py

= ny

nx

(1)

where nx and ny count the number of bounces off the x and y axes respectively,
and are therefore integers. A non periodic trajectory will be obtained if px/py is
irrational.

Note that the PO condition only depends on the momenta: if a particle is launched
with the same momenta from two nearby initial positions, the two periodic orbits will
evolve in the same way, the PO’s being deformed one relative to the other, as in the
example shown in Fig. 1(a). On the other hand if the second initial conditions also
involve a change in the momenta, the ensuing trajectory will not be periodic and will
deviate in time from the PO, as portrayed in Fig. 1(b). The period TPO of a periodic
orbit is given by

TPO = L

√
n2

x + n2
y√

p2
x + p2

y

. (2)

Fig. 1 Classical trajectories in a square billiard with sides of length L = 10 (arbitrary units). (a) A clas-
sical periodic orbit (PO), going through the points labeled M and N is shown in black. The grey dashed
(online: red) line shows a trajectory launched near M with the same momenta as the black PO; it is also a
PO. (b) Two trajectories are launched from M : the first one in black is the PO shown in (a). The second,
in dashed grey (online: red) has slightly different initial momenta, which is enough to render the trajectory
non-periodic (the red arrow shows the position of the trajectory slightly after t ∼ 5TPO)
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2.2 Classical Distributions Dynamics

The most general classical distribution ρ(x,p, t) should be considered in phase space.
ρ gives a density of particles having positions x = (x, y) and momenta p = (px,py).
The time evolution of ρ from an initial density ρ0(x,p) is governed by Liouville’s
theorem

∂ρ

∂t
= {H,ρ}, (3)

a statement of the conservation of the flow in phase-space, dρ/dt = 0; {, } denotes
the Poisson bracket. Inside the billiard the Hamiltonian H = p2/2m is trivial. The
bounces due to the wall can be treated as above by considering first free motion for
the distribution and then appropriately folding it back inside the square. In terms of
the configuration space variables, (3) takes the form

∂�

∂t
+ 1

m
∇x

∫
ρ(x,p, t)pdp = 0 (4)

where

�(x, t) ≡
∫

ρ(x,p, t)dp (5)

is the configuration space density. Note that if the momentum is a pre-assigned func-
tion of a position dependent momentum field P(x, t), the phase-space density takes
the form ρ(x,p, t) = �(x, t)δ(p − P(x, t)) and (4) becomes

∂�

∂t
+ 1

m
∇x(�(x, t)P(x, t)) = 0. (6)

In classical mechanics, the field in configuration space is well-known to be given [8]
in terms of the classical action S(x0,x, t) via

P(x, t) ≡ ∇x S(x0,x, t), (7)

ensuring that the mechanical momentum is recovered. Note that P and S are in gen-
eral multivalued fields.

Classically, any normalized distribution can be envisaged. We will work with ini-
tial distributions fairly well localized in configuration space. If each point of the dis-
tribution has the same initial momentum obeying (1), the propagation of the ensemble
is straightforward—the ensemble moves along the family of neighboring periodic or-
bits as in Fig. 1(a). However, anticipating on the analogy with the quantum mechan-
ical square billiard, we will choose initial distributions admitting a dispersion in the
momenta; the ensemble will then spread as it propagates. To be specific, let

ρ0(x,p) = π−2 exp

[
− (x − x0)

2

2d2
− 2�2(px − px0)

2
]

× exp

[
− (y − y0)

2

2d2
− 2�2(py − py0)

2
]

(8)
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where d and � are parameters that control the widths of the Gaussians. By integrating
over the momenta, we obtain

�0(x) = exp[− (x−x0)
2

2d2 ] exp[− (y−y0)
2

2d2 ]
2πd2

. (9)

The usual properties of Gaussian distributions,

〈x〉 = x0 〈x2〉 = x2
0 + d2, (10)

〈px〉 = px0 〈p2
x〉 = p2

x0
+ 1/4�2 (11)

are verified (as well as the same properties for y). A solution of the Liouville equation
ρ(x,p, t) follows by replacing x → x − pt/m in (8); integrating over the momenta
yields

�(x, t) = exp[− 2m2�2

t2+4d2m2�2 ((x0 − x + px0 t

m
)2 + (y0 − y + py0 t

m
)2)]

πt2

2�2m2 + 2πd2
. (12)

Hence in configuration space, the initially localized classical distribution spreads in
time, the spreading being controlled by the width of the initial Gaussian d . We will
further employ in this work only distributions characterized by � = d (holding for
the chosen units), so that the product of the variances V (x)V (px), readily obtained
from (10) and (11) does not depend on d or �.

An example is illustrated in Fig. 2: a distribution of the form (8) is initially placed
at x0 ≡ xM lying on the periodic orbit shown in Fig. 1(a) with p0 ≡ pM in the direc-
tion of the arrow along the PO. Figure 2 shows snapshots taken at different times, as
the distribution spreads and becomes nearly uniform for t ∼ 100TPO. Note that due
to the linearity of the Liouville equation, one can classically envisage to take as the
initial distribution the sum of two Gaussians (9) localized at two different points of
the billiard. The evolution for the ensemble is then obtained by linear superposition of
the evolution of the two Gaussians, as illustrated in Fig. 3 for a distribution obtained
by superposing two ensembles initially localized on two points of the periodic orbits
xM and xN .

3 The Quantum Square Billiard

3.1 Eigenstates and Propagator

The eigenstates in configuration space and eigenvalues of the quantum billiard are
readily obtained from those of the infinite well problem,

ψnx,ny (x, y) = 2

L
sin

nxπx

L
sin

nyπy

L
, (13)

E(nx,ny) = �
2π2

2mL2

(
n2

x + n2
y

)
. (14)
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Fig. 2 Time evolution of a classical distribution in configuration space. (a) At t = 0 the classical distrib-
ution given by (8) is a Gaussian centered on M , with pM in the direction of the arrow, along the periodic
orbit shown in Fig. 1 (plotted in black). The height of the normalized distribution is given in arbitrary units
that are nevertheless the same in all the figures. The centre of the distribution follows the periodic orbit.
(b) gives a snapshot at t = 3/4TPO and (c) at t = TPO (first return at M). The initial classical distribution
spreads with increasing time; (d) shows the distribution at t = 5TPO . For longer times, the distribution in
the box becomes a folded Gaussian: (e) shows the distribution at t = 25TPO and (f) at t = 100TPO , when
the distribution is nearly uniform

Fig. 3 Time evolution of a classical distribution composed of two initially localized Gaussian compo-
nents. (a) At t = 0 the classical distribution is given by two equal Gaussians centered at M and N , with
pM and pN in the direction of the arrows, along the same periodic orbit shown in Fig. 1. Each Gaussian
follows the periodic orbit, spreading as the time evolves. The two Gaussians must cross at several points be-
fore returning to their respective initial points. (b) shows the distribution slightly before the two Gaussians
superpose when they cross at t = (11/8)TPO . (c) shows the situation at t = 5TPO . The initial Gaussians
have sufficiently spread so that their wings superpose. At longer times, one obtains the type of behaviour
shown in Fig. 2(f)

The propagator—the configuration space representation of the time evolution
operator—is that of the free particle with an appropriate folding into the original
square. The free particle propagator takes the well known form

K(x0,x, t) = m

2π�t
exp

(
im

2�t

[
(x0 − x)2 + (y0 − y)2] − i

π

2

)
, (15)
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which in the square billiard is exact for short times (no bounces on the walls). We
will omit to give explicitly the additional terms accounting for the bounces that must
be added to (15) (see e.g. Chap. 6 of [9] for the full expression). Instead it will be
more convenient for interpretational purposes to employ the semiclassical form of K .
Recall that for free or quadratic potentials, the semiclassical approximation to the
propagator is exact: the semiclassical propagator is given by [10]

K(x0,x, t) =
∑

k

1

2iπ�

∣∣∣∣det
∂2 Sk

∂x∂x0

∣∣∣∣
1/2

exp
(
iSk(x0,x, t)/� + iφk

)
, (16)

where the sum runs on all the classical trajectories k connecting x0 to x in the time t .
Sk is the classical action for the kth trajectory and the determinant is the inverse of
the Jacobi field familiar from the classical calculus of variations, reflecting the local
density of the paths. φk is a phase that takes into account the bounces on the hard
wall.

3.2 Quantum Dynamics

We will take for the initial wavefunction the localized Gaussian

ψ0(x) = 1

d
√

2π
exp

−(x − x0)
2 − (y − y0)

2

4d2
exp

i

�
(xpx0 + ypy0). (17)

px0 and py0 can be taken as parameters, though their physical meaning is revealed by
taking the Fourier transform or computing the averages

〈X̂〉ψ0 = x0 〈X̂2〉ψ0 = x2
0 + d2, (18)

〈P̂x〉ψ0 = px0 〈P̂ 2
x 〉ψ0 = p2

x0
+ �

2/4d2, (19)

which unsurprisingly are the same as the classical ones if one puts � ∼ d/�.
The time evolved wavefunction,

ψ(x, t) =
∫

dx′K(x′,x, t)ψ0(x′) (20)

is readily computed by employing (15), giving the probability density

|ψST (x, t)|2 =
exp[− 2m2

�2t2/d2+4d2m2 ((x0 − x + px0 t

m
)2 + (y0 − y + py0 t

m
)2)]

π�2t2

2d2m2 + 2πd2
. (21)

This expression is exact for the free particle, but is only valid for very short times in
the square billiard. Note nevertheless that the probability density propagates exactly
like the classical distribution (12). The additional terms due to the bounces that need
to be added to (16) can produce interferences at longer times, as is apparent by using
the expression (16) of the propagator. Indeed, if there are several points x′ such that
ψ0(x′) is non-vanishing that are propagated to the same x in the time t , different
trajectories will contribute to K in (20), leading to interferences. This means that
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Fig. 4 Time evolution of the quantum probability density in configuration space. (a) At t = 0 the initial
wavefunction is given by (17) with x0 ≡ xM and p0 ≡ pM . The parameters are chosen to match exactly
those of the classical distribution illustrated in Fig. 2 (hence we take � = 1). With these parameters, the
wavefunction leaves the region around M in the direction of the arrow and propagates along the classical
periodic orbit. (b), (c) and (d) give snapshots of |ψ |2 at t = 3/4TPO , t = TPO , and t = 5TPO respectively.
The evolution and spreading of the quantum probability density is nearly identical to that of the classical
counterpart in Fig. 2. (e) and (f) shows the quantum probability distribution at t = 25TPO and t = 100TPO
respectively. For longer times, interference resulting from the reflection of the distribution as it spreads
creates a very high density of peaks, though as in the other cases, the smoothed quantum distribution
corresponds to the classical one

each point x′ of the initial wavefunction is carried by a classical trajectory to the final
point x, interferences happening when several classical trajectories each carrying a
part of the propagating wavefunction arrive simultaneously at x.

Summarizing, we can say that the quantum propagation of the initial wavefunc-
tion is exactly like the propagation of an analog classical distribution, except for the
provision of the wavefunction superposition (whereas in the classical case the super-
position concerns the positive valued distribution themselves). Examples are given
in Figs. 4 and 5. In Fig. 4 the initial wavefunction is of the form (17) with x0 ≡ xM

and p0 ≡ pM in perfect correspondence with the classical distribution lying on the
periodic orbit shown in Fig. 2. Figure 5 combines in the initial wavefunction two
Gaussians at xM and xN with respective parameters pM and pN matching those of
the classical distribution pictured in Fig. 3. We take as the initial wavefunction

ψ(x, t = 0) = 1√
2

(
ψM(x) − ψN(x)

)
(22)

which is one choice among many other possibilities leading to an initial quantum den-
sity matrix whose diagonal elements in the position representation match the initial
classical distribution of Fig. 3.



Found Phys (2009) 39: 903–920 911

Fig. 5 Time evolution of the quantum probability density in configuration space when the initial wave-
function is given by (22). (a) At t = 0 the initial wavefunction is composed of two Gaussians centered
respectively at M and N , each Gaussian leaving in the direction of the arrow along the classical periodic
orbit. The diagonal position density matrix elements for this initial situation corresponds to the classical
distribution portrayed in Fig. 3(a). (b) shows |ψ |2 slightly before the two Gaussians cross at t = (11/8)TPO
(compare with Fig. 3(b)). (c) shows the situation at t = 5TPO; the overlap of the two components of the
spreading wavefunction results in interferences relative to Fig. 3(c)

4 Bohmian Mechanics of the Square Billiard

4.1 General Remarks

The de Broglie-Bohm theory proposes to interpret quantum phenomena in terms of
a point-like particle propagating along well-defined deterministic trajectories in con-
figuration space through the guidance of the wavefunction (excellent accounts of the
theory are given in Refs. [1, 6]). The initial position of the particle, and therefore its
precise trajectory cannot be known, and this is why only statistical predictions can be
made; these match the predictions of standard quantum mechanics. Employing the
polar decomposition

ψ(x, t) = R
1/2
ψ (x, t) exp(iSψ(x, t)/�), (23)

the Schrödinger equation in terms of R and S yields the coupled equations

∂Rψ(x, t)

∂t
+ 1

m

 · (Rψ(x, t)�Sψ(x, t)

) = 0 (24)

and

∂Sψ(x, t)

∂t
+ (�Sψ(x, t))2

2m
+ V (x, t) + Qψ(x, t) = 0, (25)

where V (x, t) is the usual potential (that vanishes here except on the billiard’s bound-
aries) and Qψ(x, t) is a term known as the quantum potential given by

Qψ(x, t) ≡ − �
2

2m

�2R
1/2
ψ

R
1/2
ψ

. (26)

The momentum and the velocity of the particle are introduced via a configuration
space field defined from the polar phase function through

pψ(x, t) = mvψ(r, t) = �Sψ(x, t) (27)
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allowing to obtain the particle’s equation of motion in a pseudo-Newtonian form

dpψ

dt
= −�(V (x, t) + Qψ(x, t)). (28)

The defining equations of the BB theory are similar to those of classical mechanics in
the Hamilton-Jacobi formalism; compare in particular (24) with (6) and (27) with (7).
However from a structural point of view, this analogy is superficial. The equations of
classical mechanics arise from the flows in phase-space obeying the canonical equa-
tions of motion (the Hamilton equations, the principle of least action etc.), for any
choice of canonical coordinates. Any distribution can be decomposed into elementary
phase-space elements obeying these equations, i.e. the dynamics of the distribution
depends on the elementary phase-space dynamics. In the de Broglie-Bohm theory
on the other hand, the dynamics of the particle depends on the wavefunction (this
is reflected in our notation with the indices labeled by ψ ). The law of motion for an
individual particle depends on the statistical distribution Rψ to which the particle be-
longs. As can be seen from (24) and (27), the dynamics of the particle is determined
by the direction of the probability flow in configuration space, which becomes the
only physical representation.

4.2 BB Trajectories in the Square Billiard

Although Bohmian trajectories have been computed for an incredibly wide variety
of quantum systems, and despite that fact that the particle in a 1D box is one of the
most widely used examples in any BB theory primer, very few works deal explicitly
with the determination of BB trajectories in a square billiard. Bohm and Hiley (see
Sect. 8.5 of Ref. [6]) employ the square billiard to give a general argument on the
type of trajectories that can be expected from a wavefunction obtained by combining
a few eigenstates of the Hamiltonian. This example was used as a blueprint by differ-
ent authors who investigated several systems in the following years; it was explicitly
applied to the square billiard a few years later [11]. It was noted, as expected, that
the type of trajectory (regular, chaotic, localization) depended in a crucial way on
how the initial wavefunction was constructed (the choice of the participating eigen-
states and their relative weights). This was thought not to be very illuminating from
the point of view of the quantum-classical correspondence, and a further work [12]
examined the case when a localized wavepacket was taken as the initial wavefunc-
tion. Only BB trajectories for short times were computed, the conclusion being that
the Bohmian particle propagates in a classical-like way, undergoing in particular the
specular reflection on the walls. Here we give a more complete study of BB trajecto-
ries in the framework of the quantum-classical correspondence examined above. The
calculations are made by integrating numerically the guidance equation (27). The
results will be discussed in Sect. 5.

4.2.1 Simply Localized Initial State

We first compute the Bohmian trajectories in the case of Fig. 4—the initial wavefunc-
tion is a Gaussian centered at M that propagates for short times along the classical
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Fig. 6 De Broglie-Bohm trajectories for a quantum state initially localized at M , whose evolution was
shown in Fig. 4. (a) Short time motion when the Bohmian particle is initially localized at xi ≡ xM , the
maximum of the Gaussian. The particle follows the wavepacket, leaving M in the direction of the arrow
along the red trajectory until it returns at M at time TPO; the trajectory is quasi-periodic, and resembles the
classical periodic orbit along which the wavepacket moves. The trajectory in the interval TPO < t < 2TPO
is shown in black and in dashed purple for the interval 2TPO < t < 3TPO; actually both lines are hid-
den behind the previous red line except near the boundaries of the billiard, where the Bohmian particle is
reflected farther away from the boundary as time increases. (b) Same as (a) for times up to 40TPO: the tra-
jectory for the time interval 0 < t < 10TPO is shown in dark gray (red online), for 10TPO < t < 20TPO in
light dashed gray (dashed green online), and for 20TPO < t < 40TPO in black. As t increases, the particle
slows down; it still follows a periodic quasi-closed trajectory, with period TPO , but within a zone restricted
to the centre of the billiard slows down while restricting its motion toward the center of the billiard; the
thick gray (yellow online) line represents the quasi-closed trajectory in the interval 30TPO < t < 31TPO .
(c) For the same quantum state, the trajectory for a particle with an initial position slightly off the maxi-
mum of the Gaussian (xi = (xM + L/80, yM + L/80)) is shown with the same colour coding as in (a) for
0 < t < 3TPO and a light gray line showing the trajectory for longer times 3TPO < t < 13TPO

periodic orbit shown in Fig. 1. The BB trajectory when the initial position is cho-
sen at xi ≡ xM (the maximum value of the distribution) is shown for short times in
Fig. 6(a): the trajectory follows the wavepacket, leaving M in the direction of the ar-
row. The behaviour is nearly that of the classical trajectory—this is the bouncing-ball
regime put in evidence in [12]—and the trajectory is quasi-periodic: the BB trajectory
leaves M at t = 0, follows the line shown in red and reaches M again at the period
of the classical PO TPO which is also the period of the maximum of the Gaussian
wavepacket. The trajectory for t ∈ [TPO,2TPO] and t ∈ [2TPO,3TPO] is shown in
black and dashed purple respectively—it retraces the original path (in red) except
near the boundaries of the billiard. There, the quantum potential gets more repulsive
further from the boundaries; this is readily explained by the fact that as the Gaussian
spreads, a larger portion of the Gaussian is reflected off the boundaries before the
maximum of the Gaussian arrives. This creates an inversion of the net current in the
direction perpendicular to the wall. As a result the Bohmian particle turns around
before reaching the boundary.

The same trajectory for longer times is shown in Fig. 6(b). The colour scheme is
the following: the trajectory for t ∈ [0,10TPO] is shown in red, for t ∈ [10TPO,20TPO]
in dashed green, and for t ∈ [20TPO,40TPO] in black. The qualitative quasi-periodic
aspect of the trajectory disappears on a longer timescale: the particle still follows
an almost closed-orbit, though the shape of the orbit is progressively deformed. The
‘pseudo-period’ however does not change. It takes the same time, TPO, for the par-
ticle to pass (very) near M for the first time after having been initially launched
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from M than to trace an almost closed orbit at longer times (see the thick yel-
low line in Fig. 6(b), representing the trajectory in the interval the trajectory for
30TPO < t < 31TPO, tracing a quasi-closed orbit). The particle thus slows down,
restricting its motion to a small area around the centre of the billiard.

Figure 6(c) shows the Bohmian trajectory when the initial position xi of the par-
ticle is slightly off the maximum of the Gaussian (the probability distribution there
is about Rψ(xi ,0)/Rψ(xM,0) � 1/5 of the maximum probability). For short times,
the Bohmian particle follows a bouncing ball regime similar to a non-periodic clas-
sical trajectory (such as the one shown in Fig. 1(a)). However after only a few
pseudo-periods, as the wavefunction spreads, the probability current drives the tra-
jectory in the right upper quadrant of the billiard, as the particle considerably slows
down.

4.2.2 Doubly Localized Initial State

We now compute the Bohmian trajectories corresponding to the case portrayed in
Fig. 5: the initial wavefunction is given by (22), with the probability distribution being
initially concentrated in the Gaussian peaks localized at M and N . Hence in this state,
the Bohmian particle is localized initially either near M or N . In a given realization
one of the two wavepackets is an empty wave—it does not carry the particle but
nevertheless has dynamical effects. Figure 7(a) shows the BB trajectory for a particle
initially sitting at the maximum of the distribution xi ≡ xM . The trajectory for the
time interval 0 < t < TPO is shown in dark blue in Fig. 7(a); it is also plotted in
red in Fig. 7(c). The trajectory leaves M in the direction of the arrow, arrives in the
zone labeled H in Fig. 7(b) with vanishing velocity; the particle then turns around,
retracing almost exactly its previous path, going back through M , until it reaches
the zone labeled K (without crossing the region L); the particle turns around with
vanishing velocity at K and retraces almost its previous path until it reaches M again
at t � TPO. The particle then leaves again the M region in the direction of H ; this
quasi-periodic motion is shown in Fig. 1(a) in light blue for TPO < t < 5TPO and in
dashed green for 5TPO < t < 10TPO. As t increases, the trajectory turns back with
increasing distance from the regions around H, L and K , and the mean velocity
decreases.

Figure 7(b) shows the BB trajectory for a particle initially sitting at the maximum
of the distribution xi ≡ xN , with the same colour scheme employed in Fig. 7(a).
The deformation of the quasi-periodic trajectory as t increases is identical to the
one seen in Fig. 7(a), except that the particle occupies a different area of the square
billiard. The trajectory for 0 < t < TPO is also shown in dark blue (dark grey) in
Fig. 7(c): the particle initially leaves N in the direction of the arrow, turns back in the
H region, going back through N until it reaches K (without crossing the L region),
at which point it turns back and reaches N again at t � TPO. Note that taken together,
the two trajectories for Bohmian particles initially placed at M and N trace, in the
interval 0 < t < TPO, the shape of the classical periodic orbit going through M and
N (compare Fig. 7(c) with Figs. 6(a) and 1(a)). This is to be expected, since for short
times, the distribution does not spread significantly and each wavepacket initially
centered at M and N moves by following the periodic orbit. Of course this is not
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Fig. 7 De Broglie-Bohm trajectories for the quantum state given by (22), initially localized at M and
N whose evolution was shown in Fig. 5. (a) Trajectory obtained when the Bohmian particle is initially
localized at xi ≡ xM . The particle leaves with the wavepacket in the direction of arrow, turns around at
H , then K , and arrives at M in a time TPO (dark line, dark blue online). The motion in the time intervals
TPO < t < 5TPO and 5TPO < t < 10TPO is shown in light gray (light blue online) and dashed dark gray
(dashed green online) respectively. (b) Same as (a) but when the Bohmian particle is initially localized
at xi ≡ xN . (c) Bohmian trajectories for 0 < t < TPO taken from (a) and (b) plotted together; the overall
shape is very similar to that of the classical periodic orbit of Fig. 1 going through M and N . (d) Same as
(c) for 10TPO < t < 11TPO

the case for longer times: Fig. 7(d) shows the same Bohmian trajectories initially
launched from N and N for times 10TPO < t < 11TPO (compare with Fig. 6(b)).

The main feature visible for the BB trajectories in the doubly localized initial state
is the reflection that the particle undergoes at H , L and K . This behaviour has no
classical counterpart: it is the result of the interference of the two Gaussian amplitudes
at these points. Indeed the center of the two Gaussians cross at these points; Fig. 5(c)
illustrates the case of a constructive interference at L. Here the two wavepackets
have opposite components along the x axis, so the net probability density current
along x decreases as the two Gaussians start to interfere. The particle, moving before
the crossing point along with the localized wavepacket, slows down, whereas the
Gaussians keep moving with constant group velocity. Ultimately the net current in the
x direction reverses before the particle reaches the crossing point, thereby giving rise
to the avoided crossing type of behaviour at L (for a general detailed investigation of
quantum trajectory behaviour when Gaussian wavepackets interfere, see [13]). When
the net current is reversed in both the x and y directions, the Bohmian particle’s
motion is reversed; this is what happens in the H and K regions. In this respect, it
may be noted that the empty wavepacket (the Gaussian that, before the crossing, does
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not carry the particle) produces the same dynamical effect than the reflection on the
billiard’s boundaries. Indeed, at H and K the reversal of the probability current along
x is due to the empty wavepacket, whereas the reversal in the y direction is produced
by the reflection of the Gaussian wavepacket on the boundary walls.

5 Discussion

5.1 The Quantum-Classical Correspondence

The term ‘quantum-classical correspondence’, as employed in this paper, reflects the
use that is usually made in works undertaken in the field of ‘quantum chaos’. It is
indeed well-known that when the classical action appearing in the path integral ex-
pression for the propagator K(x0,x, t) is much larger than �, then K(x0,x, t) can be
approximately written in terms of the sole classical paths relating x0 to x. This allows
to understand the properties of quantum systems (such as the distribution of the en-
ergy levels, scars in the wavefunctions, recurrences in the time-dependent behaviour
of the system) in terms of the properties of the analog classical system [16, 17]. Such
a correspondence is particularly useful in the studies of nonseparable quantum sys-
tems, for which quantum computations are either nonfeasible or yield uninterpretable
results.

In the square billiard, the quantum-classical correspondence is extremely simple:
the semiclassical form of the propagator (16) is exact meaning that each point of
the quantum wavefunction propagates along a classical trajectory. This explains the
correspondence between the dynamics of the classical distributions (Figs. 2 and 3)
and those of the quantum distributions (Figs. 4 and 5). The dynamical evolution in the
classical and quantum cases is essentially identical, the important difference being of
course that classically the probability distribution evolves by following the classical
trajectories, whereas quantum mechanically the wavefunction evolves by following
the classical trajectories, the distribution resulting from the interference of different
bits of the wavefunction each carried by a classical trajectory.

Hence the quantum-classical correspondence is only dynamical—it remains silent
on the ontological aspects. The classical ensemble is a statistical distribution of point-
like particles in phase-space, giving the probability distribution in configuration space
as a function of time for a fixed initial distribution. The quantum ensemble appears
as the intensity of a field (here presented in configuration space). Although the field
moves by following the classical motion, it cannot be associated with a distribution of
point-like particles—the field interferes and only its intensity represents the statistical
distribution.

5.2 Properties of Bohmian Trajectories

From (24) and (27), it is straightforward to establish [1] that the de Broglie-Bohm
trajectories follow the streamlines of the probability flow, the velocity of the Bohmian
particle depending on the local current density jψ through

jψ(x, t) = Rψ(x, t)vψ(x, t). (29)
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Hence if the wavefunction is a localized wavepacket, the particle will be restricted to
move with the wavepacket; in a coarse-grained sense, the particle’s motion follows
that of the wavepacket, irrespective of its precise initial position. This is particularly
clear in Fig. 6(a): the wavepacket initially sharply localized at M follows the classical
periodic orbit of Fig. 1(a). The BB trajectory therefore also follows the classical tra-
jectory, except near the boundary of the billiard where the part of the wavepacket that
is traveling ahead of the Bohmian particle’s position is reflected, thereby reversing
the current density and preventing the particle from reaching the boundary.

As the wavepacket spreads over substantial portions of the billiard, each Bohmian
trajectory will be sensitive to very fine details of the probability flow, implying a
crucial dependence of the trajectory on the initial distribution and the initial position.
In Fig. 6(b), when the initial position lies on the top of the Gaussian, the ensuing
trajectory is symmetric around the center of the billiard, whereas when the initial
position is slightly off the center of the Gaussian (Fig. 6(c)) the fixed point is in the
upper right-hand corner. Given that locally the probability flows have no relation to
the classical dynamics of the billiard, the BB trajectories will be unrelated to the
classical ones.

The example portrayed in Fig. 7, corresponding to a doubly localized initial state,
shows that even for short times and localized wavepackets, BB trajectories can be
markedly different from the classical ones. This is well illustrated in Fig. 7(c): al-
though each of the localized wavepackets launched from M and N follows the clas-
sical periodic orbit of Fig. 1(a), when these wavepackets cross the net current density
can locally vanish and reverse its course. This is why taken together, the two Bohmian
trajectories are able to recover the periodic orbit. This is to be expected, since on a sta-
tistical basis BM matches the quantum mechanical predictions showing wavepacket
propagation along the classical orbit. Notwithstanding if the dynamics predicted by
the de Broglie-Bohm theory is taken as a realist account of quantum phenomena, an
individual particle follows “in reality”1 one of the two non-classical Bohmian trajec-
tories (depending on its initial position), the classical orbit appearing as a statistical
artifact.

5.3 Bohmian Mechanics and the Classical Limit

It is well-known that typical Bohmian trajectories are not classical. As such, this fea-
ture is not necessarily a problem, provided one can account unambiguously for the
emergence of classical mechanics. However achieving the classical limit turns out to
be an intricate problem (see Chap. 6 of [1]). It is generally admitted [6, 18–22] that
BB trajectories in closed systems being generically non-classical, in order to emerge,
classical mechanics calls for a special class of states combined with environmental

1The main experimental realization of 2D quantum billiards consist of mesoscopic devices such as quan-
tum dots [14], containing an electron in a cavity having a definite shape; the properties of the electron such
as the conductance peaks, are correlated with the periodic orbits of the corresponding classical cavity. It
is still difficult to control precisely the wavefunction in a quantum dot so as to create a doubly localized
Gaussian state. However doubly-localized states are routinely created by tailored laser excitation of the
outer electron in Rydberg atoms [15].
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interactions. More precisely, following an initial suggestion made by Bohm and Hi-
ley [6], it has been argued [19–21] that Bohmian mechanics in the classical limit must
involve a mechanism yielding a localized and non-spreading packet behaving quasi-
classically. This mechanism can only arise when the closed system interacts with an
environment inducing decoherence.

Relying on decoherence to recover classical trajectories from non-classical ones
raises a number of problems. First, as we have discussed elsewhere [23], this ar-
gument appears as somewhat specious when applied to semiclassical systems: in
closed semiclassical quantum systems, the wavefunction as well as several observ-
able properties already display the fingerprints of the underlying classical dynamics.
The Bohmian particle has a non-classical motion, but this motion is determined by
a wavefunction that is itself built from the underlying classical structure and dis-
plays classical morphological features. In this respect, the square billiard is a simple
semiclassical system, for which, as shown above, the quantum-classical correspon-
dence is straightforward; several quantities not discussed in the present work (like
recurrences in the autocorrelation function) can also be given a semiclassical expla-
nation in terms of the large-scale structures determined by the underlying classical
dynamics. As already mentioned (see also [24, 25]), the de Broglie-Bohm account of
such features involves non-classical trajectories following the streamlines of the flow.
Only globally are the classical structures recovered on a statistical basis, like the clas-
sical periodic orbit obtained in Fig. 7(c) by combining two individual non-classical
Bohmian trajectories.

Second, decoherence actually involves averaging over the “measurements” per-
formed by the environment. Relying on this effect to achieve classicality faces well-
known interpretational problems [26]. Indeed, the reduced density matrix becomes
diagonal for all practical purposes, but the total wavefunction remains entangled, and
it is only by reinterpreting the reduced density matrix that a pure state is transformed
into an improper [27] statistical mixture. From a de Broglie-Bohm dynamics point
of view, the total wavefunction has several branches corresponding to the simulta-
neous couplings with the environmental states. Each interaction of the system with
the environment leads to only one branch of the wavefunction being active (the one
containing the particle); the other branches are the so-called “empty waves”—they
still exist and can potentially become active (and interfere) again, unless they are
suppressed by hand, in an ad-hoc manner (this is done for example when discussing
measurements in Sect. 8.3. of [1]). In the absence of a dynamical theory for the empty
waves (maybe supplemented by an account of the observation process in which only
the particle would give rise to a psychophysical parallelism, see Ref. [28]), the col-
lapse is only apparent and the emergence of classical dynamics is not ensured.

The third point concerns the specific conditions under which decoherence will
turn Bohmian into classical trajectories. As a general rule decoherence converts, for
practical purposes, a pure state into a mixed state without necessarily implying non-
spreading probability distributions. There is no universal dynamical mechanism that
will achieve this, but the tentative models given in [6, 19–21] all rely on obtaining
non-spreading wave-packets behaving quasi-classically. Note however that demand-
ing the classical limit to be achieved by non-spreading mixtures does not require any
of the specific resources of the de Broglie-Bohm theory—any other interpretation
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of quantum phenomena that can dispose of (or rather, accept) the interpretational
problems associated with the post-decoherence improper mixtures is as effective as
Bohmian mechanics in achieving classical motion. Indeed, if decoherence is taken
as being successful in recovering classicality, by phenomenologically associating a
classical particle with a localized non-spreading wavepacket moving on classical tra-
jectories, there is no need to postulate the existence of a point-like particle pursuing
well-defined trajectories. The specific epistemological assets of the de Broglie-Bohm
interpretation would then play no role in accounting for the emergence of classicality.

Finally, in line with the first remark it can be objected [29, 30] whether requir-
ing localized and non-spreading mixtures is the proper way to achieve the classical
limit. Classically, the spreading is the result of the Liouville diffusion of the statisti-
cal distribution. Since the quantum-mechanical statistical distribution depends on the
wavefunction, there is no fundamental reason to constrain the wavefunction to avoid
spreading. The problem for Bohmian particle dynamics is that the spreading neces-
sarily brings in interferences (e.g. when the wavepacket hits the billiard’s boundary),
making it impossible to recover classical motion if the particle moves along a given
streamline of the flow. This conclusion was already put forward in different terms
by Holland [18] who noted that neither pure nor mixed states allowed to generate
classical motion from the ensuing probability flow.

6 Conclusion

In this work, we have investigated Bohmian trajectories in a square billiard and con-
trasted them with quantum wavepacket dynamics and with the trajectories of the clas-
sical square billiard. As expected from a path integral approach, the quantum square
billiard displays dynamics abiding by the quantum-classical correspondence—each
bit of the spreading quantum wavefunction propagates along a classical trajectory. On
the other hand, individual Bohmian trajectories were shown to be generically highly
non-classical, although statistically the underlying classical large scale structures are
recovered as expected. We have also argued that the inclusion of decoherence is un-
likely to allow de Broglie-Bohm dynamics to recover classicality. This conflict be-
tween the dynamical continuity involving the classical propagation of the wavefunc-
tion and the persistence of non-classical, typically quantum features of the probability
distribution on smaller scales is not limited to the de Broglie-Bohm interpretation—it
is relevant to the study of the quantum-classical transition irrespective of any par-
ticular interpretation. However, this conflict does take an acute form for Bohmian
mechanics because the ontological claims made by this interpretation involve a con-
tinuity with the ontology of classical mechanics.
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