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Dynamical entanglement and chaos: The case of Rydberg molecules
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A Rydberg molecule is composed of an outer electron that collides on the residual ionic core. Typical states
of Rydberg molecules display entanglement between the outer electron and the core. In this work, we quantity
the average entanglement of molecular eigenstates and further investigate the time evolution of entanglement
production from initially unentangled states. The results are contrasted with the underlying classical dynamics,
obtained from the semiclassical limit of the core-electron collision. Our findings indicate that entanglement is
not simply correlated with the degree of classical chaos, but rather depends on the specific phase-space features
that give rise to inelastic scattering. Hence mixed phase-space or even regular classical dynamics can be

associated with high entanglement generation.
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I. INTRODUCTION

Simply stated, a Rydberg molecule is composed of a
highly excited electron orbiting around a compact ionic mo-
lecular core, containing the nuclei and the tightly bound
other electrons. Most of the time, the outer electron is very
far from the core. It is spatially well-separated from it, and
the core and electron dynamics are uncoupled, the core’s
dynamics being characterized by its rotational energy. How-
ever, the outer electron periodically scatters on the molecular
core. In quantum-mechanical terms, the electron and core
dynamics get coupled and the collision induces phase shifts
in the wave function of the outer electron, known as quantum
defects [1,2]. This process has a well-defined classical coun-
terpart [3]: the electron is kicked by the core, resulting in a
change of the electron’s angular momentum relative to the
core by an angle that depends on the quantum defects. Dur-
ing the kick, the core and the outer electron may exchange
energy, so that in general the rotational state of the core has
changed after the collision. Although a molecule is intrinsi-
cally a quantum object, several properties, such as the stro-
boscopic effect seen in laser excitation or the statistics of the
energy levels have been shown to depend on the underlying
classical dynamics [3,4].

There is, however, a distinctive quantum feature that has
no classical counterpart, which is readily touched upon by
observing that a typical molecular state is described by quan-
tum mechanics as a superposition of the different core states
available to the molecule, each state being associated with
the corresponding outer electron. This superposition is the
result of the electron-core entanglement produced by the col-
lision.

The main goal of this paper is to investigate the entangle-
ment dynamics and in particular its dependence on the un-
derlying classical regime. Indeed, there has been a growing
interest in recent years to correlate the entanglement produc-
tion of a quantum system with the dynamics of the corre-
sponding classical system. For example, the time-dependent
entanglement production was investigated on the N-atom
Jaynes-Cummings model (a single mode field interacting
with a two-level spin), where the initial product-state wave
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packet was chosen to lie in different regions of classical
phase space [5]. Similar studies were undertaken for kicked
tops [6—8]. The initial claims [5,6] by which entanglement
would systematically increase with chaos were revised in
subsequent works. One of the problems was to unequivocally
define the classical counterpart for such systems, which is far
from being straightforward for the spin-boson case and has
been discussed for the coupled kicks system. A semiclassical
approach [9] based on the average properties of phase space
concluded that both the coupling strength (in the form of
classical correlators) and the global classical dynamical re-
gime were important in understanding the entanglement rate.
However, the relevance of universal relations relating the
generation of entanglement to the dynamics of the corre-
sponding classical system are still being debated: the form of
the initial quantum state is known to play a role [10-12], and
from a more general viewpoint realistic systems usually dis-
play more complex dynamics than simple systems that
present a uniform behavior over all points of phase space. In
this respect, the choice of Rydberg molecules to investigate
entanglement generation may be fruitful: these real systems
are theoretically well described (by quantum defect theory),
the semiclassical limit is readily obtained, and the classical
dynamics is sufficiently simple to be well understood (at
least qualitatively) without being too simplistic.

This work is organized as follows. In Sec. II, we briefly
recall some basics concerning the quantum theory of simple
Rydberg molecules and describe the classical counterpart of
such systems, insisting on the relevant Poincaré surfaces of
section. In Sec. III, we determine the degree of the electron-
core entanglement, inferred from the linear entropy of the
reduced density matrix for the outer electron. We will calcu-
late some simple statistics on groups of eigenstates corre-
sponding to different classical regimes. We will then follow
the time evolution of the entanglement from an initially un-
entangled product state. This will be done for different initial
states and various dynamical regimes. The results will be
discussed in Sec. IV. We will see that the classical dynamics
is reflected in the entanglement generation, but the global
dynamical regime is less important than the specific classical
effects that are quantum mechanically translated into super-
positions. Our closing comments will be given in Sec. V.
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II. RYDBERG MOLECULES—QUANTUM AND
CLASSICAL

A. Quantum phase shifts

A Rydberg molecule is composed of two elements: a
highly excited electron (the Rydberg electron) on the one
hand, and the ionic molecular core, positively charged, con-
taining the nuclei and the tightly bound other electrons on
the other hand. The Rydberg electron is usually far from the
core and only senses the long-range Coulomb field produced
by the core, irrespective of the complex interactions involv-
ing the core particles. The total energy of the molecule E is
consequently partitioned between the energies of the core
and of the Rydberg electron.

For definiteness, we will take a diatomic molecule for
which vibration can be neglected: rotation is then the only
motion available to the core. Since the molecule is isolated,
the total angular momentum J and its projection M on an
axis fixed in the laboratory are conserved. We have

J=N+L, (1)

i.e., J results from the addition of the angular momenta of
the core, N, and of the Rydberg electron L. We shall assume
that L is conserved, as is often the case, and the standard
addition of angular momenta gives

[J-LI=N=|J+L]|. (2)

Each state of the core is therefore labeled by |N). Recall that
it also follows from the addition of angular momenta that
whereas N and L are well defined, their projections M, and
m on the reference axis are not, since only the total projec-
tion M=My+m is well defined. Therefore, the notation |N>
also contains the angular state of the Rydberg electron, via
the geometrical angular momenta couplings. As is well
known, the energy of the core E* depends on N through a
rotational constant B,,

Ey=BNN+1), (3)
and the total energy of the molecule is thus
E=B,N(N+1) + ey, 4)

where €y is the energy and vy the effective quantum number
of the Rydberg electron,

-1

2
2vy

ev= (5)
(atomic units are used throughout). Note that for a given
value of E, € implicitly depends on the state of the core: the
electron is more or less excited depending on whether the
core has a large or small rotation number N. Here we will
only deal with bound states (i.e., E is below the lowest ion-
ization threshold). The wave function corresponding to the
Rydberg electron in the Coulomb field of a core in the rota-
tional state |N) is thus

¢N(E9r)=|N>fL(E_E+’r)’ (6)

r being the radial coordinate and f; the Coulomb function
regular at the origin.
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Now when the electron significantly approaches the core,
the interaction between the core particles and the electron
cannot be neglected. These interactions are embodied in the
short-range potential V, which is negligible beyond the core
radius r,,. Thus the total Hamiltonian of the molecule is

H=Hy+V, (7)

with the functions ¢, being eigenstates of H. From scatter-
ing theory, it is well known that the wave functions for H are
obtained from

IN(E,r) = ON(E,T) - 2 gL(E- E]J:/I’V)|N'>KN'N’ (®)

N’

where g; is the Coulomb function irregular at the origin and
K is the scattering matrix; Ky, gives the transition probabil-
ity amplitude between states ¢y and ¢, during the collision.
The eigenfunctions of the total Hamiltonian H are obtained
by the superposition

WE.r) = 2 ZWE)Yy(E.1). 9)
N

The coefficients Zy(E) are obtained from quantum defect
theory [2] by imposing the appropriate boundary conditions
at infinity, yielding also the discrete eigenvalues E. We thus
see from Egs. (8) and (9) that a generic wave function for a
molecular Rydberg state involves a superposition of core
states with different rotational numbers. This is caused by the
short-range potential V that transforms the product state ¢y
[Eq. (6)] into the entangled state . In practical computa-
tions, Eq. (9) is of awkward use because taken individually
each of the functions i(E,r) diverges radially. Equation (9)
is therefore rewritten as

WE,r) = 2 BY(E)F (€y,1)|N), (10)
N

where the F;(ey,r) are the effective channel functions,

F(€y,r) = sin B(ey)f1(€y,r) — cos Bley)gr(ey,r), (11)

which by construction converge as r— . B(ey) = m(vy—L)
is precisely the total phase accumulated at r— . The coef-
ficients By are obtained from the Zy by matching Egs. (9)
and (10).

An additional subtlety arises from the use of frame trans-
formations: the wave functions given above were described
in the laboratory frame. However, when the electron collides
on the core, a description in the molecular frame, attached to
the core rotation, is more appropriate, because in the core
region the Rydberg electron senses the cylindrical field
aligned along the molecular axis. Thus only the projection of
L on that axis, traditionally denoted by A, matters when
describing the collision: the phase shifts induced by the col-
lision on the Rydberg electron’s wave function are known as
quantum defects and denoted by w,. The collision matrix K
appearing in Eq. (8) is obtained by expressing the phase
shifts u, in the laboratory frame [1].
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FIG. 1. Molecular reference frame. The core axis is along OZ
and its angular momentum N is along OX.

B. Classical kicks

The classical counterpart of the quantum model intro-
duced above is the following [3]. When the Rydberg electron
is far from the core, it follows a pure Coulomb (Kepler) orbit
with an angular momentum L fixed in space. Meanwhile, the
molecular core rotates freely with a rotational energy N(N
+1)/21I depending on the core’s angular momentum N and
moment of inertia /=1/2B,. Seen in the molecular frame, L.
precesses around N, i.e., it turns around the N axis with a
constant angle (see Fig. 1). Now when the outer electron
approaches the core, it gets kicked by the molecular axis.
This kick results in a change in the direction of L. N adjusts
accordingly, since the total angular momentum J is con-
served. To visualize the effects of the kick, it is therefore
sufficient to follow the evolution of L in the molecular
frame.

Since during the collision the Rydberg electron feels the
cylindrical field due to the molecular axis, # cannot change
and thus only the angle ¢ varies (see Fig. 1). This variation,
denoted J¢, is the deflection angle of the plane of the clas-
sical Kepler orbit. The relation between the classical deflec-
tion angle and the quantum scattering phase shifts is well
known from the semiclassical approximation to the scatter-
ing amplitude [13]. Here it takes the form

I
op=2m7—"—, 12
p=2m (12)

i.e., the strength of the kick, reflected in the amplitude of the
deflection angle, is the classical counterpart of the depen-
dence of the phase shifts on A. The precise form of this
dependence depends on the particular molecule at hand.
However, for a typical molecule, the dependence can be
taken in the form

AZ

,U~A=,U~0—k_47TL' (13)

Classically, the coupling parameter k gives the strength of
the kick since it follows from Egs. (12) and (13) that

A
|5go|:kzzkcos 6. (14)
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FIG. 2. Two limiting Poincaré surfaces of sections. (a) No cou-
pling k=0, (b) large coupling k=10 (in the generic case, see Fig. 4
below). The shaded areas correspond to quantum states with mini-
mal (J—L=40) and mean (/=50) values of N (see Sec. III). Their
widths correspond to AN=1. The mean N=J case is not on the
equatorial OYZ plane, as can be understood by squaring J=L+N
(where N is “horizontal,” parallel to OX) when the lengths of N and
J are equal.

To visualize the classical dynamics, a Poincaré surface of
section is obtained by plotting the position of L after each
kick. This is most naturally done in the molecular frame
where the position of L is given by the polar angles (6, ¢), as
shown in Fig. 1, with ¢ being canonically conjugate to L.
This is the molecular reference frame used in quantum me-
chanics. However, as in our previous works [3,4,14], we pre-
fer to add an extra rotation around OZ to bring the OX axis
along N. This last rotation is not canonical but the classical
motion is seen more naturally in this frame (see the discus-
sion in Ref. [14]). The position of L is thus plotted after each
kick, when the electron comes out of the core. Of course,
since J=L+N is conserved, following the position of L is
tantamount to knowing the fate of N. Two extreme examples
of Poincaré sections are given in Fig. 2. In the first case, Fig.
2(a), the positions of L follow circles around N (the X axis)
giving an overall regular surface of section. This means that
on a given circle L is fixed in space, as is J, and thus that
N=|J-L| is constant. In the second case, Fig. 2(b), the sur-
face of section is clearly characteristic of a chaotic phase
space and no structure arises by following the successive
positions of L after each kick.

III. ENTANGLEMENT DYNAMICS
A. General remarks

Generically, in a Rydberg molecule the core and the outer
electron are entangled; in the situation examined in this
work, the core is in a superposition of different rotational
states. Each rotational state is defined by a given value of N,
and to each core state is associated an outer electron with an
energy e(N) given by Eq. (4). Hence the outer electron is in
a superposition of different channels that are distinguished in
the present model by a different energy, depending on N.
Classically of course there is no superposition in N: the ro-
tational energy of the core, and thus the energy of the outer
electron, is at each instant unique and well defined. A change
in N can only be the dynamical result of an inelastic kick.
Note that classically as well as quantum mechanically, the
angular momenta L and N are coupled, since J is conserved.
As is well known, the composition of angular momenta in
quantum mechanics results in couplings due to the fact the
projections of the angular momenta vectors cannot be simul-
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taneously defined. This entanglement of a geometrical nature
(as in EPR pairs) should not be confused with the dynamical
entanglement generated by the potential interaction between
the outer electron and the core. Geometrical entanglements
due to angular momenta coupling do not play any role in this
work, as we are only interested in the dynamical one, which
only depends on |N|. This implies that a product state is
given by the channel functions ¢y(E,r), defined by Eq. (6),
i.e., only the radial coordinate of the outer electron is sepa-
rable from the core whereas its orbital angular momentum is
necessarily geometrically coupled to the core’s angular mo-
mentum N (since J is conserved and H, has spherical sym-
metry). Hence when referring to partial traces on the outer
electron, we will mean a trace over its sole radial coordinate,
and conversely a partial trace over the core includes tracing
over the angular coordinates of the electron.

To quantify entanglement we will determine the linear
entropy S, associated with the reduced density matrix p, de-
scribing the outer electron,

p.=Trp= 2, (N|p|N), (15)
N

where p=|y)(y] is the density matrix of the system and Tr,
(Tr,) refers to averaging over the core (outer electron) de-
grees of freedom. The reduced linear entropy is then defined
by

Sy=1-"Tr,p’. (16)

Strictly speaking, S, measures the degree of mixedness: S,
vanishes for a pure state and is maximum for a uniformly
mixed state. However, when S, is associated with improper
mixtures in bipartite systems, it reflects the degree of en-
tanglement [15], and the linear entropy or equivalent quanti-
ties such as the purity have routinely been employed as such
[5,7,9-11,16]. We will undertake two different studies. First
we will investigate the degree of entanglement on stationary
states and its dependence on the collision phase shifts, whose
classical counterpart gives rise to different dynamical re-
gimes. This involves the computation of simple statistics of
S,(E) in an energy range for which the classical dynamics
does not vary. We will then investigate the time evolution
S,(t) from an initially (at r=0) product state. This involves
the determination of wave-packet dynamics. The initial wave
packet can be made to lie and then evolve in zones corre-
sponding to different classical dynamics.

We will obtain numerical results for the following choice
of parameters: J=50, L=10 yielding by Eq. (2) 21 values for
N. Since Kronig’s parity, i.e., parity by reflection at a plane
through the internuclear axis OZ (which for fixed L and J
depends on the parity of N), is conserved, entanglement only
takes place between states of the same Kronig parity. States
of (+) and (-) Kronig’s parity, called positive and negative
states in standard spectroscopic notation [17], behave in the
same way, and we will restrict our study to (+) parity states;
then N can only take even values, so that a typical state
contains superpositions involving up to 11 values of N.
These angular momenta numbers are considerably higher
than for typical diatomic molecules (they would better cor-
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FIG. 3. (Color online) Average linear entropy for generic (red
boxes) and resonant 7, =Ty, states (black boxes), shown for different
values of k. The rms is also shown as red dashed (generic) and solid
(resonant) error bars.

respond to models of large molecular compound Rydberg
states). However, higher quantum numbers allow a finer
comparison between quantum and classical dynamics, with-
out qualitatively affecting the correspondence between them:
see [ 18], where partial results with angular quantum numbers
typical of diatomic molecules such as Na, were obtained
[23].

B. Degree of entanglement of eigenstates

The eigenstates (E) of a Rydberg molecule are given by
[Egs. (10) and (11)]

WE) = X, By(E)[sin B(E - E)fL(E - E}.r)
N

— cos B(E - Ex)g,(E - Ex,1)]IN). (17)

To quantify the degree of entanglement of a given eigenstate,
we compute S,(E). Variations from individual eigenstates are
smoothed out by calculating simple statistics for the bunch of
eigenstates sitting in an interval AE. The requirement on AE
is that the classical dynamics does not change appreciably
within this interval. Several computations are performed for
different values of the coupling constant k. Each value of k
corresponds to a different collision matrix K via Eq. (13).

The results are shown in Fig. 3. The average and rms of
S, are given for different values of k. Figure 3 shows both
the results for a “generic” situation which would be obtained
for an arbitrary choice of E and the results for resonant
eigenstates: in the latter case, E is chosen such that the pe-
riod of the Rydberg electron T, is an integer multiple of half
the period of the core 7,. Classically, this corresponds to a
situation in which the electron sees the core in the same
position on its return as when it left the core region. Reso-
nances affect the classical dynamics, essentially by retarding
the appearance of chaos. This is portrayed in Fig. 4, which
shows Poincaré surface of sections for several values of the
coupling k in both the generic and the resonant cases. In the
former case, chaos appears even for a small value of «,
whereas in the latter configuration, chaos becomes signifi-
cant for larger values of the coupling, and even for such a
large value as k=10 an island of regularity around the fixed
point on the Z axis is still visible.

Figure 3 indicates that on average the degree of entangle-
ment, as measured by (S,), increases with k. However, this
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FIG. 4. Poincaré surfaces of section for different values of the
coupling constant k. Top, generic; bottom, resonant cases. (a,d) k
=0.25. (b,e) k=1. (c,f) k=10.

does not mean that entanglement is correlated with classical
chaos. Thus, for example for k=0.25, the average entangle-
ment is significantly higher in the resonant case than in the
generic case, despite phase space being slightly more regular
[see Figs. 4(a) and 4(d)]. For k=1, (S,) has the same value in
the generic and resonant cases, although the dynamical re-
gimes, as reflected in the surfaces of section Figs. 4(b) and
4(e), are quite different.

We further illustrate the effect of a resonance both on the
classical dynamics and on the linear entropy for the case k
=0.5. Indeed, as the energy is appreciably moved away from
the exact resonance energy, the classical dynamics accord-
ingly changes, going back toward a generic situation. This is
shown in Fig. 5 (top): the Poincaré surface of section at the
center is plotted at the exact resonance energy. However, as
the energy changes appreciably, the periods of the Kepler
orbit and the core rotation are significantly altered, suppress-
ing the resonance. Classically, the structure of phase space is
modified, as can be directly seen on the surfaces of section
plotted at both ends of the energy range. At all energies,
phase space is regular, but the separatrices characterizing the
resonance give way to island chains and curves organized
around OX. Figure 5 (bottom) shows the linear entropy for

0.6

(0.4
0.2
; : 0
300 320 340
v(E)

FIG. 5. (Color online) Classical phase-space and linear entropy
in the k=0.5 resonant situation. (Top) Poincaré surfaces of sections
at the left, middle, and right ends of the energy interval shown at the
bottom. (Bottom) Linear entropy of the individual eigenstates. The
black dots between the dashed lines correspond to the states that
entered the statistics shown in Fig. 3. Each eigenstate of energy E is
labeled by v(E), the principal quantum number in the N=J channel.
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FIG. 6. Husimi plots (top) and By(E) coefficients (bottom) for
two particular wave functions in the k=0.5 resonant situation near
the center of the interval plotted in Fig. 5. Left level, with v(E)
=315.4233, is nearly quantized on the minimum value of N=40 as
shown by the By distribution. Compare its Husimi plot with shaded
areas in Fig. 2. It has S,(F)=0.03658. The right level, with vg
=315.6118, quantized nearby the +OZ axis, spans a greater number
of By values. Its Husimi plot overlaps with a greater number of N
circles indicated in Fig. 2. It has S,(E)=0.68381.

the individual states lying within this energy range. It may be
seen that as we move away from resonance, the behavior of
the linear entropy drops dramatically: most states show a
lower degree of entanglement. The degree of entanglement
clearly appears to be correlated with the changes in phase
space induced by the resonance. The findings presented in
Figs. 3 and 5 will be discussed in Sec. IV, but we may note
that these results indicate that entanglement is sensitive to
the details of classical phase space, not only to the global
dynamical regime. Note that the statistics for k=0.5 shown in
Fig. 3 were done from the 200 individual states lying within
the dashed lines in Fig. 5.

To grasp the relationship between quantum entanglement
and the classical dynamics for individual eigenstates, we
project the wave functions in mock phase space on the sur-
face of section by drawing the Husimi plots for two eigen-
states having different values of S,. We give in Fig. 6 the
Husimi plot along with the 11 By, coefficients of two particu-
lar wave functions lying very near the center of the reso-
nance shown in Fig. 5. The first one is (accidentally) a nearly
pure N=40 wave function. Its Husimi plot shows that it is
quantized near the +OX axis, as expected from the gray zone
displayed in Fig. 2. Being a nearly pure product, it has thus a
very low linear entropy, S,=0.03658. The second wave func-
tion is (also accidentally) quantized nearly on the +OZ axis.
Its phase-space extension is nearly the same, but the decom-
position on the By basis spans more values of N, as shown in
the lower part of the figure. This is understood by consider-
ing the overlap of its Husimi plot with OX-centered circles,
each such circle corresponding to a value of N. Its linear
entropy is thus correspondingly much higher: S,=0.6881.

C. Dynamical evolution of entanglement

We consider the time dependence of the generation of
entanglement from an initial product state. Assume the sys-
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tem has been prepared so that at r=0 the core has a well-
defined rotational state |N,) whereas the outer electron is
radially localized at the outer turning point of the Kepler
orbit, several thousand atomic units away from the core. The
wave packet attracted by the Coulomb interaction moves to-
ward the core and collides on it at r=T7,/2. The collision
results in entanglement, since the outgoing waves of the
Rydberg electron are in a state of superposition, each outgo-
ing channel being attached to a core in a different quantum
state. Subsequent collisions with the core result in further
entanglement, whereas the spreading of the radial wave
packet quickly results in a continuous core-electron interac-
tion.
We take the initial state to be

W1=0,r) = Fioe(r=ry,) @ [Ny), (18)

where the radial function is

2
Floe(r) = 2 et =m280 R | () (19)

with an appropriate normalization factor. R,;(r) are the stan-
dard radial functions of the hydrogen atom (regular Coulomb
functions) and the Gaussian form of the coefficients are
known to ensure localization [19]. n, is chosen so that the
central component of the wave packet matches the energy of
the corresponding classical regime under study. At later
times, the wave function is given by

1) = 2 2 BUE)e BF (E-ERn)IN),  (20)
E N

where
BA(E) = B\(E) By (EXFL(E = Ey)|Fioc), (21)

where the coefficients By(E) and effective channel radial
functions F;(E—E,) were given above [cf. Egs. (10) and
(11)]. The radial overlap (F;(ey)|F.) is determined analyti-
cally as a particular instance of the scalar product
(F(€)|F.(€)) given by [20]

(FyO|F i)y = T = ) 22)
m(v-7v")

multiplied by the relevant normalization factors [24].

In principle, the computation of the linear entropy associ-
ated with the reduced density matrix is straightforward. From

p(1) = () g1)] (23)

we obtain the purity Trepg(t) and the reduced linear entropy
S,(1) as

Trepg(t)=J<r|pg|r>r2dr, (24)
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FIG. 7. (Color online) Short time variation of the linear entropy
generated from the initial product state Fio.(r=ry,) ® [Ny=40) for
different collision matrices labeled by the value of the coupling
strength k: from top to bottom, k=10 (topmost curve, red), 1
(middle curve, black), and 0.25 (bottom curve, blue). ¢ is given in
units of the Kepler period T,. (a) The parameters are chosen so that
the corresponding classical dynamics falls in the generic phase-
space case. (b) Same as (a) for the resonant case T,=T,. In both (a)
and (b), the k=0.25 curve is multiplied by a factor 5.

Tr,pX(t) = 2 | 2 e EEVBYE) By (E')

NN' | EE'

X(F(E' -ELFE-EN|®. (25

The radial closure relation needs to be introduced in Eq. (24)
given that the effective radial functions that play the role of
the basis are overcomplete.

1. Short-time evolution

We examine first the short-time evolution for three differ-
ent couplings (kick strength)—k=0.25, 1, and 10—and two
different initial states distinguished by the value of Ny: N,
=J-L [that is the minimal value N, can take, cf. Eq. (2)] and
Ny=J. The corresponding zones in the surfaces of section are
shaded in Fig. 2. Recall that on the surface of section, a fixed
value of N, corresponds to a line circle around the X axis,
whereas a quantum state in mock phase space projected on
the surface of section has a certain width, as seen in Fig. 6.
The width of the initial state can be roughly estimated by
plotting the zone going from N-0.5 to N+0.5, cutting the
sphere approximately into the number of values N can take
(here 11).

Figures 7(a) and 7(b) show the linear entropy as a func-
tion of time (in units of the Kepler period) for the generic
and resonant cases when the initial state (18) is chosen with
Ny=J-L=40. Figure 8§ gives the linear entropy when the
initial state is taken with Ny=50. In Fig. 7, we observe that in
both the generic and resonant cases S,(t)=1-Tr,p(7) in-
creases with k: entanglement is produced more rapidly and
saturates at a higher value. Comparing with the classical dy-
namics, we see that in the generic case, the rise in entangle-
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FIG. 8. (Color online) Same as Fig. 7 but with the initial product
state given by Fioc(r=r,) ® [Ng=50) (the k=0.25 curve is not mul-
tiplied by a factor 5).

ment generation accompanies the classical transition to
chaos. This remains true to a certain extent in the resonant
case, as mixed phase-space turns progressively chaotic.

However, when the initial rotational state lies near the
center of the surface of section (Fig. 2), the linear entropy
takes very high values irrespective of the classical dynamical
regime. This is particularly spectacular for k=0.25, which
jumps from negligible values in Fig. 7 to crossing the k
=10 curve of the linear entropy in Fig. 8(b). For the first few
periods, this increase of the linear entropy takes place in
steps, reflecting the collision of the radially localized elec-
tron wave packet with the core at each half-integer value of
t/T, (the wave packet spreads radially after a few periods).
These findings will be discussed in Sec. IV, but we may note
again that as found for the eigenstates there is no simple
relation between the global classical dynamical regime and
quantum entanglement generation.

2. Long-time evolution

In Figs. 7 and 8, the linear entropy appears to saturate
after a few periods. For longer times S,(¢) is plotted in Figs.
9 (when the initial state has Ny=40) and 10 (Ny=50). In
most of the cases [all the k=10 curves and the k=1 curves
except in Fig. 9(b)], S,(¢) appears to vary randomly around
some average value. However, for small kicks [the k=0.25
curves, but also the k=1 curve in Fig. 9(b)] the repetition of
oscillatory structures is clearly visible to the eye. These rep-
etitions are due to partial wave-packet revivals within each
channel, which take place when the terms that control the
spreading of the packet regain an approximate phase coher-
ence. The revival times within each channel are determined
in the semiclassical approximation by expanding the energies
in the exponentials in Eq. (25) as a function of the classical
action. The core’s revival time 7"« B;' is independent of
the energy, whereas 75 €. A revival in the linear entropy
will be visible provided one or two channels dominate in the
overall contribution.

For the k=0.25 case in Fig. 9(b), most of the probability
density stays in the original Ny=40 channel, a small flux
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FIG. 9. (Color online) Long-time variation of the linear entropy
for the case considered in Fig. 7 [Ny=40, (a) generic and (b) reso-
nant cases]. The inset in (b) blows up the vertical scale for the k
=0.25 curve to help visualize the oscillations, also visible for k=1.

flowing to the N=42 channel. This flux is responsible for the
main part of the entanglement generation. We have plotted in
Fig. 11 the correlation function

C(t) = (Yot = T,12)|¢hir(1)) (26)

where

(1)) = (N = 42|y(1)) (27)

gives the electronic wave packet in the N=42 channel. It can
be seen that near =100 7, the correlation function oscillates
dramatically: high peaks appear while at the same time the
lowest values are near zero. This behavior translates into the
entanglement rate, which shows the same strong oscillations
as seen in the inset in Fig. 9. The revival time for the electron

0 75 150
t/Te

225

FIG. 10. (Color online) Long-time variation of the linear en-
tropy for the case considered in Fig. 8 [Ny=50, (a) generic and (b)
resonant cases]. The inset in (b) details S,(¢) in the region 7= 80 to
110 7,.
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FIG. 11. The partial autocorrelation C(7) defined by Eq. (26)
(parameters corresponding to the k=0.25 resonant case, arbitrary
units) is plotted in an interval centered around the revival time
T =105 T,

motion in this case is computed in the semiclassical approxi-
mation as 7%," =105 T,. This value fits well with the periodic
repetitions of these strong oscillations observed for S,(z).

IV. DISCUSSION

If we compare the time evolution of the linear entropy
portrayed in Fig. 7 to those of Fig. 8, the importance of the
initial state is clear. If we further contrast these results with
the Poincaré surfaces of section of Fig. 4 and the localization
of the initial states shown in Fig. 2, we see that the genera-
tion of entanglement does not essentially depend on the glo-
bal classical dynamics, but rather on the specific dynamics
that leads to inelastic scattering. Classically, inelastic scatter-
ing means that the value of N changes during the collision;
then on the surface of section, two consecutive points cannot
lie on circles around the X axis (since these circles corre-
spond precisely to a fixed value of N). Inelastic collisions do
take place when the dynamic is chaotic: for very strong kicks
(k=10), two consecutive points on the Poincaré sections are
arbitrarily separated on the sphere. Quantum mechanically
inelastic scattering is translated into superpositions of states
having a different value of N. The k=10 curves in Figs. 7(a)
and 8(a) indeed reflect large and fast entanglement genera-
tion. S,(z) achieves its maximal value (of 10/11) just after a
couple of collisions.

However, inelastic scattering can also be induced by regu-
lar dynamics. Consider k=0.25 in the resonant case. When
the initial state encircles the X axis at the front of the sphere
as happens with Ny=40 (see the shaded region in Fig. 2), it
will be hardly modified by the classical dynamics. The lines
in the surface of section [Fig. 4(d)] also encircle the X axis,
thereby conserving N,: there is essentially only elastic scat-
tering. Quantum mechanically we expect little or no en-
tanglement, as is observed in Fig. 7. But for Ny=50, the
initial distribution spans across the lines of regularity in the
surface of section, which are organized around the elliptic
fixed point on the Z axis. These lines thus define torii in
phase space that cut across several values of N, meaning
inelastic scattering and quantum-mechanical superpositions.
Note that in the generic k=0.25 situation, the linear entropy
is lower than in the resonant case; classically, the structure of
phase space in the zone covered by the initial state is modi-
fied due to the appearance of resonant islands [Fig. 4(a)],
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leading to some lines that roughly encircle the X axis, par-
tially favoring elastic scattering.

We thus see that the entanglement production reflects the
classical dynamics in that the relevant parts of phase space
leading to inelastic collisions (yielding quantum superposi-
tions) are explored with a large amplitude. To a large extent,
this phenomenon is unrelated to whether the dynamical re-
gime is chaotic or regular. Classical chaos is not necessary to
induce high entanglement generation. In our system chaos is
sufficient, because it always leads to inelastic scattering.
Hence eigenstates quantized in an underlying strongly cha-
otic phase space will present on average a large amount of
mixtures, as seen in Fig. 3. These remarks are in line with
similar conclusions [10-12] that, contrary to earlier results
[5,6], do not attribute to chaos a higher entangling power.

Let us mention that more precise investigations of the
correlations between classical dynamics and dynamically in-
duced entanglement should take into account more informa-
tion than what can be inferred from the Poincaré surfaces of
sections. For example, in the generic k=1 case [Fig. 4(b)],
diffusion in the chaotic sea takes place at a considerably
lower rate than in the k=10 situation. In particular, the par-
ticle may be trapped for several periods in certain regions of
phase space, diffusing slowly in the relevant regions of the
surface of section. This type of phenomenon has an influence
on the quantization process, and if important it will influence
the entanglement production, as in the present case. We
therefore expect that these system-specific features, along
with the role of the initial state relative to the precise struc-
ture of phase space, may severely constrain the applicability
to realistic systems of general “universal” formulas ruling
the entanglement generation in chaotic and regular systems
that have been recently obtained [9,16]. Semiclassical uni-
versal formulas, based on the global average properties of
classical phase space, are important as they set the trend that
is followed by a quantum system with simple dynamics (like
a uniform transition to chaos). However, individual features
of the system are known to be important in the semiclassical
description of diffractive effects induced by a coupling po-
tential and need to be taken into account, e.g., to describe the
spectral statistics [21]. It is thus not surprising to see that
dynamical entanglement induced by a standard potential cou-
pling is correlated with the local structure of phase space,
and not only with its global properties.

Concerning the long-time behavior, it may be noted that
the revivals appear well beyond the Heisenberg time, after
which quantum phenomena having no classical counterpart
become prominent. In some cases, for example when the
number of channels is small, the oscillations due to wave-
packet revivals induce very large variations of the entangle-
ment rate totally unrelated to the behavior at short times.
Hence the linear entropy of a state that initially only showed
a slow and small amount of entanglement generation can rise
above the linear entropy of a state that initially displayed
high and fast entanglement production.

We finally point out that entanglement in Rydberg mol-
ecules is routinely detected experimentally, given that the
consequences of entanglement appear in even the most el-
ementary measurements (e.g., interference of Rydberg series
in photoabsorption spectra). A quantitative measurement of
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entanglement, which would more closely reflect the evolu-
tion of the linear entropy, can be set up by combining the
methods employed for the detection of interfering Rydberg
wave packets [22]. These methods are based on the use of
several laser pulses with well-defined phase relations to
monitor the interferences appearing in the population of pre-
defined Rydberg states.

V. CONCLUSIONS

We have investigated the entanglement production in Ry-
dberg molecules and contrasted the results with the underly-
ing classical dynamics, which is known to play a role in the
understanding of observable spectroscopic effects [3] and in
the interpretation of the energy levels statistics [4]. We have
first determined the average linear entropy of eigenstates cor-
responding to different collision strengths (quantum phase
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shifts or classical kicks) and then studied the generation of
entanglement from initially unentangled states. We have seen
that the quantum/classical correspondence on the level of
entanglement production is relevant not on the scale of the
global classical dynamical regime, but rather on the specific
classical features that quantum mechanically translate into
superpositions. In Rydberg molecules, it is a high rate of
inelastic scattering for an initial classical distribution that
corresponds in the quantum domain to states displaying a
high degree of entanglement. The relation between global
chaotic or regular behavior on the one hand and these spe-
cific classical features that will be translated quantum me-
chanically as entanglement production on the other hand ap-
pears to depend strongly on the individual system under
investigation. We therefore conclude that it seems unlikely
that the generation of entanglement could be employed as a
reliable signature of chaos for an arbitrary dynamical system.
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