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Abstract
Excited bound states are often understood within scattering-based theories as
resulting from the collision of a particle on a target via a short-range potential.
We show that the resulting formalism is non-Hermitian and describe the Hilbert
spaces and metric operator relevant to a correct formulation of such theories.
The structure and tools employed are the same that have been introduced
in current works dealing with PT-symmetric and quasi-Hermitian problems.
The relevance of the non-Hermitian formulation to practical computations
is assessed by introducing a non-Hermiticity index. We give a numerical
example involving scattering by a short-range potential in a Coulomb field
for which it is seen that even for a small but non-negligible non-Hermiticity
index the non-Hermitian character of the problem must be taken into account.
The computation of physical quantities in the relevant Hilbert spaces is also
discussed.

PACS numbers: 03.65.Ca, 03.65.Nk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The standard formulation of quantum mechanics requires physical observables to be
mathematically given in terms of Hermitian operators. In recent years, theories with a
non-Hermitian Hamiltonian have been receiving an increasing interest sparked by work in
the field of PT-symmetric quantum mechanics [1]. PT-symmetric Hamiltonians are complex
but nevertheless possess a real spectrum. The structure of PT-symmetric theories, initially
suggested to hinge on the existence of a charge conjugation operator [2], has been clarified
by showing [3] that the non-Hermitian Hamiltonians could be mapped to Hermitian ones’
and therefore be fitted within the better known framework of quasi-Hermitian operators [4].
The relevance of the non-Hermitian formulation for the description of physical systems is still
being debated [5–8].
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In the present work we show that the effective Hamiltonians appearing in certain theories
dealing with bound state scattering by a short-range potential are non-Hermitian. In this
case the Hamiltonians are real and their non-Hermitian character stems from the boundary
conditions obeyed by the eigenstates: on the one hand, there is no physical asymptotic
freedom (since the states are bound) and on the other hand, the scattering solutions inside the
short-range potential region do not exist. In principle, an underlying Hermitian Hamiltonian
does exist, but its solutions are unknown in practice; non-Hermiticity is introduced by the
scattering formulation which is necessary to solve the problem. We will argue that the
unambiguous formulation of bound state scattering may shed some light on issues regarding
the physical relevance of non-Hermitian formulations of quantum mechanics. Let us mention
that in the overwhelming majority of applications of the bound state scattering formalism to
nuclear, atomic or molecular physics non-Hermitian issues have been generally ignored; this
is unproblematic when non-Hermiticity is small (as is generally the case), but we will give an
illustration in which ignoring the non-Hermitian nature of the scattering Hamiltonian brings
in errors that can be directly attributed to the (inappropriate) use of the standard inner product.
We state right away that the standard scattering theory (which deals with real asymptotic—i.e.
unbound—states) is not concerned by non-Hermitian issues, as will become clear below.

We will first introduce the bound state scattering theory and show why the scattering
Hamiltonian is non-Hermitian in the ‘physical’ Hilbert space Hph (section 2). The quasi-
Hermitian Hamiltonian will then be described by an expansion in terms of a biorthogonal
basis, leading naturally to the definition of a new inner product and its associated Hilbert space
H (section 3). In line with previous works on quasi-Hermitian operators, we will examine the
relationship between the two Hilbert spaces Hph and H in terms of the metric operator and
further discuss the computation of physical results in H and Hph. In section 4, the formalism
will be illustrated by carrying out the numerical calculation of an experimentally observable
quantity (the autocorrelation function) in the particular case of short-range scattering in a
Coulomb field. Our concluding remarks will be given in section 5.

2. Scattering description of excited bound states

Let H e be the exact Hamiltonian of the two-particle scattering problem (in the centre of mass;
the physical situation most often considered is that of a light particle colliding on a massive
compound target). We assume H e can be split as

H e = H0 + V, (1)

where V contains all the short-range interactions between the particles. We further assume
H0 is spherically symmetric (in terms of the relative coordinate) and that short-range means
that

〈r ′|V |r〉 = θ(r0 − r ′)V θ(r0 − r), (2)

i.e. V vanishes outside some small radius r0 (θ is the step function). Therefore, H0 contains
not only the kinetic and internal terms of the non-interacting particles, but also any long-range
interaction between them. Let E be the total energy; allowing for inelastic scattering E is
partitioned as

E = εi + εi, (3)

where εi and εi are the internal and the kinetic energy, respectively (in the case of a massive
target εi depends on the internal states of the target whereas εi is the collision energy of the
light particle). E is a positive or negative real number. The eigenstates of H0 are given by

|φi(E)〉 = |fi(εi)〉|i(εi)〉, (4)
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fi(εi, r) ≡ 〈r|fi(εi)〉 is the eigenfunction of the radial part of H0 whereas the ‘target’ state
|i(εi)〉 includes all the other degrees of freedom, including the non-radial ones of the colliding
particle (a handy notation given that the angular momenta of the particles are usually coupled).
The target states are orthogonal, 〈i|j 〉 = δij . Since we are dealing with bound states, fi(εi, r)

vanishes at 0 and +∞ (whenever E is an eigenvalue of H0).
The label i defines the scattering channel. In each channel the standing-wave solutions

are given by the Lippmann–Schwinger equations of the scattering theory as∣∣ψe
i (E)

〉 = |φi(E)〉 + G0(E)K(E)|φi(E)〉, (5)

where G0(E) is the principal-value Green’s function and K is the reaction (scattering) operator
for standing waves linked to the familiar S matrix by a Cayley transform [12]. The difference
here with the standard scattering theory is that the bound channels are included explicitly
[9–11]. The consequences are that (i) G0(E) has no poles—it is modified [9] relative to the
usual resolvent by including a term (solution of the homogeneous equation) that has poles at
the eigenvalues of H e so that overall G0(E) has no poles (but diverges radially)1; (ii) there
is no asymptotic freedom: both 〈r|φi(E)〉 and 〈r|ψe

i (E)〉 diverge at r → ∞ for an arbitrary
value of E; (iii) an eigenstate of H e cannot be given by a single channel solution of the
form (5) but requires a superposition

|ψe(E)〉 =
∑

i

Zi(E)
∣∣ψe

i (E)
〉
, (6)

where the expansion coefficients Zi(E) are determined by the asymptotic (r → ∞) boundary
conditions such that at the eigenvalues 〈r|ψe(E)〉 vanishes at infinity.

Formally H e|ψe(E)〉 = E|ψe(E)〉 is satisfied as well as the usual properties for
eigenstates of Hermitian operators, such as their orthonormality

〈ψe(E1)|ψe(E2)〉 = δE1E2 (7)

or the spectral decomposition theorem. However, in practice, the expansion of G0 over the
eigenstates of H0 is intractable. Instead the radial part of G0 is separated and the expansion
over the energies reduced to the closed form fi(εi, r<)gi(εi, r>); gi is a solution of the radial
part of H0 irregular at the origin (for arbitrary bound energies, both f and g exponentially
diverge in the limit r → ∞). Hence, the closed form of the radial Green’s function only makes
sense for r > r0 (where V vanishes). This is of course consistent with the scattering point of
view: when r < r0 we are inside the reaction zone and there is no scattering solution, whatever
happens within the reaction zone being encoded in the phase shifts. The wavefunction (6)
outside the reaction zone becomes

〈r|ψ(E)〉 =
∑

i

Zi(E)


fi(εi, r)|i〉 +

∑
j

gj (εj , r)|j 〉Kji


 r > r0, (8)

where Kji are the on-shell elements of the scattering matrix, which are assumed to be known.
It is important to note that the scattering state (8) is the part for r > r0 of the exact solution

|ψe(E)〉, and not an approximation to it. But within the scattering formulation the ‘inner’ part
of |ψe(E)〉 for r < r0 does not exist: all meaningful quantities are defined radially on [r0,∞[.
Indeed let us write

|ψe(E)〉 = θ(r − r0)|ψ(E)〉 + θ(r0 − r)|ψinner(E)〉 (9)

1 As stressed by Fano [9] who introduced this ‘smooth Green’s function’, for genuine scattering states (continuum
energies), G0(E) becomes the standard Green’s function.
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and let

H ≡
∑
E

E|ψ(E)〉〈ψ(E)| (10)

be the restriction of H e to the outer region r > r0. H is the only operator directly known from
the solutions of the scattering problem. We have the following properties:

H = H + (11)

〈ψ(E1)|ψ(E2)〉 = δE1E2 + µE1E2(1 − δE1E2) (12)

H |ψ(E)〉 �= E|ψ(E)〉. (13)

That H is Hermitian relative to the standard product can be seen to follow from its
definition (10). Equation (12) tells us first that |ψ(E)〉 are normalized to 1 like |ψe(E)〉
which might appear surprising in view of (9) but follows by showing normalization does not
depend on the inner radial part of the wavefunction (this is done by expressing the normalization
integral in terms of radial Wronskians, see section 5.7 of [13]). Equation (12) also indicates
that the scattering states |ψ(E)〉 are not orthogonal since the scalar product of two distinct
scattering states is given by µ. This may be shown by rearranging equation (8) in the form

〈r|ψ(E)〉 =
∑

i

Xi(E)|i(εi)〉Fi(εi, r) r > r0, (14)

where the overall contribution in a given scattering channel i is grouped together. As a
consequence the radial channel functions Fi(εi, r) must vanish as r → ∞ for each i (the
scattering information is now contained in the F functions and in the new coefficients X that
both depend on K). Recalling the target states are orthogonal, the scalar product (12) is seen
to depend solely on the radial overlaps between identical channel radial functions at different
energies, given by

〈Fi(ε1)|Fi(ε2)〉 = W [Fi(ε2), Fi(ε1)]r0

ε2 − ε1
, (15)

where W is the Wronskian taken at r0. This equality follows from computing
〈Fi(ε1)|p2

r |Fi(ε2)〉 − 〈Fi(ε2)|p2
r |Fi(ε1)〉 (integrate by parts and recall that the scalar product

is defined in [r0,∞]). This gives rise to nonzero boundary terms at r0, implying that p2
r is not

Hermitian on [r0,∞].2

Because |ψ(E)〉 are not orthogonal, they cannot be eigenstates of the Hermitian operator
H (equation (13)) but are eigenvectors of a non-Hermitian Hamiltonian denoted by H̃ . From
equations (1) and (2) we see that H̃ is formally given by H0 redefined by restricting it radially
to the interval [r0,∞] and supplementing it by specific boundary conditions on the surface
r = r0. These boundary conditions can be formally incorporated in a surface operator L
singular at r = r0 [14] chosen so that H̃ = H − L. The on-shell elements of L then depend
on the values of Fi(εi, r0) and ∂rFi(εi, r0), and following equation (5), L will also be energy
dependent. This completes our brief discussion on the non-Hermitian character of the bound
state scattering problem; we now analyse the structure of the non-Hermitian theory and further
examine the implications of this non-Hermiticity in practical problems.

2 The non-Hermitian character of d2

dr2 on bounded intervals with arbitrary boundary conditions is of course trivial. In
the context of scattering theory, this fact was pointed out in particular by Bloch [14] who introduced a singular surface
operator to cancel the boundary terms when defining quantities on [0, r0]. However, the non-Hermitian character
of the scattering eigenstates on [r0, +∞] is irrelevant in the standard scattering theory because the solutions of H e

and H0 are both (improperly) normalized by the same asymptotic condition, hinging on the isometry of the wave
operators.
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3. Quasi-Hermitian operators: metric and Hilbert spaces

Here we forget about the existence of an underlying exact Hamiltonian and we take the practical
scattering viewpoint. The phase shifts are given numbers (obtained from a symmetric K matrix)
and the physical states are represented by vectors in Hph, which is essentially (but not quite) the
Hilbert space of standard quantum mechanics: it is endowed with the standard scalar product
except that radially the integral is defined on [r0,∞]. There is hence no longer an inner
region and an outer region. This slight modification of the radial integral does not cause any
difference to represent the physical states, since the states of interest in scattering phenomena
(such as Gaussian states) have negligible probability amplitude in the inner zone. However, as
we will now see, the expansion of these states on the scattering solutions |ψ(E)〉 is modified,
given that the latter are eigenstates of a Hamiltonian that is non-Hermitian on Hph.

Since H̃ is non-Hermitian on Hph, we have

〈ψ(E′)|H̃ |ψ(E)〉 = E〈ψ(E′)|ψ(E)〉 (16)

〈ψ(E′)|H̃ +|ψ(E)〉 = E′〈ψ(E′)|ψ(E)〉. (17)

We are thus naturally led to introduce a biorthogonal set {|ψ̃(E)〉, |ψ(E)〉} [17], where we
denote by |ψ̃(E)〉 the eigenstates of H̃ +. Recalling from section 2 that E must be real, the
following properties are satisfied:

H̃ |ψ(E)〉 = E|ψ(E)〉 (18)

H̃ +|ψ̃(E)〉 = E|ψ̃(E)〉 (19)

〈ψ̃(E)|ψ(E′)〉 = δEE′ (20)

from which it follows that we can write the following expansions:

H̃ =
∑
E

E|ψ(E)〉〈ψ̃(E)| H̃ + =
∑
E

E|ψ̃(E)〉〈ψ(E)|. (21)

H̃ and H̃ + are further linked by

H̃ = GH̃ +G−1 (22)

where G is a Hermitian operator given by

G =
∑
E

|ψ(E)〉〈ψ(E)| (23)

G−1 =
∑
E

|ψ̃(E)〉〈ψ̃(E)|. (24)

We will take for granted the completeness of the biorthogonal basis, although it is by no
means obvious. In particular, the difficulties that arise when Hph is of infinite dimensions
have been pointed out recently [15, 16]. Completeness of the biorthogonal basis implies
that the ‘canonical metric basis’ (in the sense of [5]), consisting of the eigenvectors of the
metric operator, is also complete. From there we deduce that an arbitrary state of Hph can,
in principle, be expanded in terms of |ψ(E)〉, i.e. the eigenstates of H̃ span the entire Hilbert
space of admissible physical states even if they do not form an orthogonal basis in Hph.

Relations (16)–(24) have become familiar lately in the context of PT-symmetric quantum
mechanics and more largely in works dealing with quasi-Hermitian operators (see in particular
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[5]). Equation (22) is the defining relation of quasi-Hermiticity [15] provided G is invertible
(G−1 then being its inverse, since by (20) GG−1 is a representation of the unit operator in H)
and positive definite. We will not attempt to prove these properties here. We note however
that if |ψ(E)〉 (and hence |ψ̃(E)〉) form a basis of Hph, as we have assumed to be the case,
then G has no null eigenvalue and is thus invertible. It is of course a working hypothesis in the
scattering theory that any meaningful physical state can be expanded in terms of |ψ(E)〉 (but
this may not be true mathematically for a given arbitrary vector). The positive definiteness of
G follows heuristically by remarking that in the ‘mixed’ representation

〈ψ̃(E′)|G|ψ(E)〉 (25)

simply becomes (12), so that G � I + µM where I is the identity matrix, M is the special
matrix with elements Mij = 1 − δij and µ a small (|µ| � 1) real number. The positive
definiteness of I + µM ensures that G is positive definite too. The positive definiteness of G
is important to define a positive norm in H [4, 5, 15]. Since from equation (24)

|ψ̃(E)〉 = G−1|ψ(E)〉, (26)

the inner product is defined through

(ψ(E1), ψ(E2))G ≡ 〈ψ(E1)|G−1|ψ(E2)〉 = 〈ψ̃(E1)|ψ(E2)〉 = δE1E2 . (27)

G is thus seen to be (the positive definite) metric. By equation (22) it is immediate to verify
that H̃ is Hermitian relative to this new inner product.

Let H be the Hilbert space endowed with the inner product defined by (27). Calculations
are simple to perform in H because the new scalar product re-establishes orthogonality. Indeed
let |φ1〉 = ∑

α1(E)|ψ(E)〉 and |φ2〉 = ∑
α2(E)|ψ(E)〉 be two vectors in H. Then it follows

from equation (27) that

(φ1, φ1)G = 〈φ̃1|φ1〉 =
∑
E

|α1(E)|2 = 1 (28)

(φ1, φ2)G = 〈φ̃1|φ2〉 =
∑
E

α∗
1(E)α2(E) (29)

with the obvious notation

|φ̃1〉 ≡ G−1|φ1〉 =
∑
E

α1(E)G−1|ψ(E)〉. (30)

We further see that quantities involving the expansions of the non-Hermitian Hamiltonian,
such as the time evolution operator, cannot be directly determined in Hph in the standard
manner. But in H the evolution operator is given by

Ũ (t) =
∑
E

e−iEt |ψ(E)〉〈ψ̃(E)|. (31)

Hence, for example, if we take an initial state as |φ(t = 0)〉 = |φ1〉, the state evolves according
to

|φ(t)〉 =
∑
E

e−iEt |ψ(E)〉(ψ(E), φ1)G =
∑
E

e−iEtα1(E)|ψ(E)〉, (32)

operating in effect in H as in Hph with a Hermitian operator. The bottom line is that Ũ is
unitary in H because H̃ is Hermitian relative to this specific inner product.

However, in scattering problems, general physical states are known in Hph, not in H.
Let |ζ1〉 and |ζ2〉 be two vectors in Hph and assume they can be expanded over |ψ(E)〉 as
|ζi〉 = ∑

ai(E)|ψ(E)〉. They are normalized relative to the standard scalar product,

〈ζi |ζi〉 = 1 =
∑
EE′

a∗
i (E)ai(E

′)〈ψ(E)|ψ(E′)〉, (33)
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since the basis is nonorthogonal in Hph,
∑

E |ai(E)|2 �= 1. On the other hand, operators
involving the Hamiltonian, such as the evolution operator (31) are known on H but not on
Hph. The transformation between the two Hilbert spaces can be done both ways, H −→ Hph

for the operators or Hph −→ H for the states. Indeed if an operator Ã is Hermitian in H then

A = G−1/2ÃG1/2 (34)

is Hermitian in Hph. This follows directly from the general version of equation (22),

Ã = GÃ+G−1. (35)

This transformation defines a linear map [5] that leaves the inner product invariant:

(φ1, φ2)G = 〈φ̃1|φ2〉 = 〈φ1|G−1|φ2〉 = 〈ζ1|ζ2〉, (36)

where we have defined

|ζi〉 ≡ G−1/2|φi〉. (37)

Therefore, |ζi〉 and |φi〉 represent the same physical state but relative to different Hilbert spaces:
|ζi〉 in Hph and |φi〉 in H. Of course as vectors we may as well have, for instance, |φi〉 ∈ Hph

but then |φi〉 does not describe the same physical state as it does in H. It is interesting
to note that the functions |ψe(E)〉 defined on the Hilbert space of the exact problem (with
r ∈ [0, +∞]) represent the exact eigenstates of the underlying Hamiltonian. But |ψ(E)〉
envisaged as the restriction for r > r0 of |ψe(E)〉 do not represent the eigenstates in Hph

(now with r ∈ [r0, +∞]) but in H, that is on the Hilbert space in which the Hamiltonian H̃ is
Hermitian, despite the fact that 〈r|ψ(E)〉 and 〈r|ψe(E)〉 are identical for r > r0.

Finally, we briefly describe how to undertake practical calculations. Recalling that the
scattering solutions are eigenstates of a Hamiltonian H̃ that is Hermitian in H, and comparing
equations (34) and (37), it appears that it is computationally simpler to transform the physical
states from Hph to H rather than transform the operators to Hph. Nevertheless, in both cases
it is necessary to determine the metric G. In general (as in the illustration given below), G is
a matrix of infinite rank. G is therefore truncated around the energy interval of interest. The
matrix elements are determined in the ‘mixed’ representation given by equation (25), which
simply amounts to determine the overlaps

GEE′ = 〈ψ(E)|ψ(E′)〉, (38)

where E and E′ span the (truncated) finite interval. The resulting matrix G−1 is numerically
inverted, allowing us to determine the second set of the biorthogonal basis by equation (26). G
can also be diagonalized, retrieving in a single step G−1, G−1/2 and G1/2; we then compute the
operators in Hph or the representation of the physical states in H by inverting equation (37).
The degree of non-Hermiticity is assessed through the metric in the mixed representation (38):
if the Hamiltonian is Hermitian relative to the standard inner product, G becomes the identity
matrix. As non-Hermiticity becomes important, the off-diagonal elements of the metric
increase. To assess the degree of non-Hermiticity we introduce a non-Hermiticity index κ that
we define somewhat arbitrarily by the average of the N largest absolute values of G − I (i.e.
the N largest off-diagonal terms of the metric), where N is the dimension of the chunk of G
under study. κ is thus a local spectral measure of non-Hermiticity.

4. Illustration

To illustrate the formalism given above we will take an example in the context of the bound
states formed by the scattering of an electron on a positively charged target. This situation
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Figure 1. Each dot represents one of the 200 (N/2) largest off-diagonal elements |GEE′ | of the
metric. All the diagonal elements are given by GEE = 1.

is widely employed in atomic physics to study the highly excited (‘Rydberg’) states of atoms
with a single excited electron. More specifically, we will compute the autocorrelation function

C(t) = 〈ζ(t = 0)|ζ(t)〉 (39)

in two ways: by taking into account the non-Hermitian character of the Hamiltonian on the one
hand, and by downright ignoring Hermiticity-related issues on the other hand. Let us mention
that |C(t)| is, in principle, an experimentally observable quantity. If the non-Hermiticity index
κ is negligible, the two methods of calculation will give nearly identical result (for typical
atoms κ turns out to be very small, although non-Hermitian issues have always been ignored
from first principles).

The long-range Hamiltonian H0 in equation (1) contains the radial Hamiltonian of the
colliding electron in a centrifugal Coulomb potential as well as the free Hamiltonian of the
target (an atomic ion). fi(εi, r) in equation (4) is therefore a Coulomb function regular at
the origin (it is also regular at +∞ only if ε belongs to the spectrum of the radial part of H0, i.e.
when ε = −1/2n2, n ∈ N ). The radial channel functions Fi(εi, r) appearing in equation (14),
solutions of the radial part of the redefined H0 for r > r0, are given by a linear combination of
Coulomb functions regular and irregular at the origin, the combination ensuring that Fi(εi, r)

converges at ∞.3 For the scattering matrix K(E) we take a 6 × 6 matrix with a strong energy
dependence. We also set the six values of εi to model the internal energies of the target (we
take ε1 = 0 for the ground state and 5 different values for the excited states of the target).
The bound state energies and coefficients are obtained by applying the boundary condition
〈r |ψ(E)〉 → 0 as r → ∞, yielding the system [18]

[K(E) + R(E)]Z(E) = 0, (40)

where R(E) is a diagonal matrix with elements R(E)ii = tan π(−2(E−εi))
−1/2. This system

is solved numerically for E and then the nontrivial solutions Zi(E) are obtained. We compute
about N = 400 eigenstates. The radial overlaps (15) are determined analytically, and from
there we compute the metric elements GEE′ . For the overall chunk, the non-Hermiticity index
is calculated as κ = 0.07. The ordered distribution of the N largest off-diagonal elements of
the metric is shown in figure 1.

We now choose an initial state |ζ(t = 0)〉, that we take to be a Gaussian localized radially
very far from the target, at the outer turning point of the radial potential for an excited electron
(with a mean energy n = 55), with the target being in its ground state. Initially |ζ(t = 0)〉 is

3 Note that Fi(εi , r) mathematically diverges as r → 0, which is of course irrelevant to the scattering problem
defined on [r0, +∞].
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Figure 2. The autocorrelation function C(t) is given as a function of time (in units of the period
of the classical orbit of the electron having the mean energy of the initial state). The inset shows
the short-time situation. Dashed (red) curve: the autocorrelation function is computed by ignoring
the non-Hermitian character of the problem, following equation (43). Solid line: Result computed
by taking non-Hermiticity into account (equation (49)).

defined on an orthogonal basis of Hph but we assume (and verify numerically) that this state
can approximately be expanded on our chunk of computed eigenstates of H̃ as

|ζ(t = 0)〉 =
∑

a(E)|ψ(E)〉, (41)

where a(E) are determined by projections. At this point we proceed along the two different
lines mentioned above. In the first method of calculation we employ the machinery of standard
(Hermitian) quantum mechanics, ignoring non-Hermiticity issues. This may appear absurd in
view of the preceding discussion, but this is the way computations are undertaken in applied
problems4. Moreover, this will allow us to assess the relevance of the formalism given above
in practical calculations—as we will see by comparing the first method to the second one,
where the formalism developed in section 3 will be employed.

In the first method the expansions∑
E

|ψ(E)〉〈ψ(E)|[1orE or exp(−iEt/h̄)] (42)

are taken as representations of the unit operator, the Hamiltonian or the evolution operator,
respectively. The coefficients a(E) of equation (41) are thus given by the projection of this
‘unit’ operator as a(E) = 〈ψ(E)|ζ(t = 0)〉, and the autocorrelation function (39) follows by
employing this ‘evolution’ operator,

C(t) =
∑
E

e−iEt/h̄|a(E)|2. (43)

The result is shown in figure 2 by the dashed line; in particular, the inset shows the short-time
evolution, and it may be noticed that at t = 0 we do not have C(t = 0) = 1, i.e. |ζ(t = 0)〉 is
not normalized after the application of the ‘unit’ operator (42), which as we know is not the
correct unit operator on Hph. Neither is the ‘evolution’ defined by equation (42) unitary: the
‘norm’

〈ζ(t)|ζ(t)〉 =
∑
EE′

e−i(E−E′)t a∗(E′)a(E)〈ψ(E′)|ψ(E)〉, (44)

computed with equation (42), shows strong oscillations, displayed in figure 3.

4 It is true that in typical atomic problems, κ is significantly smaller (below 10−3) than in the example given here, so
that the computed results would only be marginally affected by taking into account the non-Hermitian character of
the Hamiltonian.
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Figure 3. The ‘norm’ 〈ζ(t)|ζ(t)〉 is computed as a function of time (in units of the period of the
mean energy classical orbit). The norm is not conserved because the ‘evolution’ operator (42) is
not unitary in Hph.

The correct method to compute C(t) involves first mapping |ζ(t = 0)〉 to H, yielding
G1/2|ζ(t = 0)〉 (cf equation (37)), then apply the unitary evolution operator in H given by
equation (31) and finally compute the result with the inner product (36) in H. If we follow the
notation (37) and put

|φ(t = 0)〉 = G1/2|ζ(t = 0)〉 (45)

we get the following equivalent expressions for the autocorrelation function:

C(t) = (φ(t = 0), Ũ (t)φ(t = 0))G (46)

= 〈φ̃(t = 0)|Ũ (t)|φ(t = 0)〉 (47)

= 〈φ(t = 0)|G−1Ũ (t)|φ(t = 0)〉 (48)

= 〈ζ(t = 0)|G−1/2Ũ (t)G1/2|ζ(t = 0)〉. (49)

Equations (46) and (47) give the autocorrelation function as computed entirely in H whereas
equation (49) is the same expression in Hph. G−1/2Ũ (t)G1/2 appears as the (correct and
unitary) evolution operator in Hph resulting from the mapping given by equation (34). The
computed result is shown by the solid line in figure 2, which of course obeys C(t = 0) = 1
(normalization at other times follows from unitarity).

The most salient feature arising from the comparison of the two curves in figure 2 concerns
the different profiles of the autocorrelation functions. This implies that it will not be possible
to recover the correct result (46) from the first method result (43) by simply renormalizing
the latter in Hph (as is sometimes done in practical scattering problems). Conversely, it would
not make much sense to assume that the initial physical state (41) is known in H, so that one
would not need to determine mapping H → Hph. Such an exception happens in the specific
but nevertheless important cases in which one is only interested in transitions involving given
eigenstates of H̃ .

5. Discussion and conclusion

We have seen that the widely employed formalism of the bound state scattering theory should
be properly understood within the framework of non-Hermitian quantum mechanics. Although
in typical cases the non-Hermiticity index κ is small so that in practice non-Hermitian issues
can be ignored, we have given an illustration for which the calculations of experimentally
observable quantities require the proper non-Hermitian formulation. The latter has essentially
the same structure and tools as the PT-symmetric systems (reformulated in the quasi-Hermitian
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framework) that are currently being extensively investigated. In the present case, the physical
meaning of non-Hermiticity is transparent: non-Hermiticity is introduced by adopting the
scattering formulation, which introduces a very slight approximation in the treatment of the
problem. In particular, we have seen that changing the radial interval minutely from [0, +∞]
in the underlying exact problem to [r0, +∞] in the scattering problem leads to an entire
redefinition of the Hilbert spaces relevant for quantum mechanics. Indeed, by this change
the Hamiltonian H̃ becomes quasi-Hermitian on Hph. One can then either redefine the inner
product, constructing a new Hilbert space H, or map the states and operators to the physical
Hilbert spaceHph. In the latter case, one works with the standard inner product radially defined
on [r0, +∞]: then the eigenstates of the Hamiltonian are not given by the scattering solutions
|ψ(E)〉 but from equation (37) by G−1/2|ψ(E)〉. This is the most dramatic consequence arising
from changing the radial interval: recall that in the exact underlying problem, the standard
inner product is radially defined on [0, +∞] and the eigenstates given by |ψe(E)〉.

We have seen that computations are simpler to undertake inH than inHph, but except in the
specific cases involving the sole eigenstates of the non-Hermitian Hamiltonian, this simplicity
is only apparent: as arbitrary physical states are known in Hph, the mapping between the two
Hilbert spaces must be explicitly determined anyway, involving the computation of the metric.
In the example given in this work the metric was constructed from the numerical calculation
of the exact eigenstates of H̃ in a restricted energy interval of interest.

A further insight gained by the existence of an underlying exact Hamiltonian H e arises
from the following remark: although the physical Hilbert space Hph is essentially the same as
the Hilbert space of the exact problem, the expansion in Hph of a physical state in terms of
the eigenstates of the Hermitian Hamiltonian G−1/2H̃G1/2 differs from the expansion in terms
of the eigenstates |ψ(E)〉 of the non-Hermitian Hamiltonian (although the physical results—
eigenvalues, probability amplitudes—will be identical). The point is that the expansion of
a state (defined on the entire radial interval) in terms of the eigenstates of H e in the Hilbert
space of the exact problem is identical to the expansion of this state in terms of the eigenstates
of H̃ in H (with the proviso that in H the radial interval is defined for r � r0). This suggests
that as far as the scattering eigenstates are concerned, H is more physical than Hph. From
a more general standpoint it appears that quantum mechanics requires above all a Hilbert
space H on which the operators are self-adjoint relative to a given inner product, whatever
this inner product may be. In this work the Hilbert space Hph defined with the standard inner
product (the L2 inner product) only entered the problem because in bound state scattering
arbitrary physical states and operators are already known in this space. In general, however, it
is possible to envisage the case in which the standard inner product would not play a special
role, although such a situation will probably lead to intricate interpretational issues regarding
the physical significance of computed quantities.
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