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Exact quantization of nonsolvable potentials: The role of the quantum phase
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Semiclassical quantization is exact only for the so-called solvable potentials, such as the harmonic oscillator.
In the nonsolvable case, the semiclassical phase, given by a series in %, yields more or less approximate results
and eventually diverges due to the asymptotic nature of the expansion. A quantum phase is derived to bypass
these shortcomings. It achieves exact quantization of nonsolvable potentials and allows us to obtain the
quantum wave function while locally approaching the best predivergent semiclassical expansion. An iterative
procedure allowing us to implement practical calculations with a modest computational cost is also given. The
theory is illustrated on two examples for which the limitations of the semiclassical approach were recently
highlighted: cold atomic collisions and anharmonic oscillators in the nonperturbative regime.
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The semiclassical treatment of integrable systems, which
can be traced back to Bohr’s atomic model of planetary mo-
tion and Einstein’s classic paper on the quantization of regu-
lar motion [1] is assumed to be a well established and ven-
erable subject. In the standard semiclassical scheme [giving
the Wentzel-Kramers-Brillouin (WKB) approximation that
can be found in any standard textbook], the phase to be
quantized is the classical action. Despite its usefulness, the
WKB scheme often results in approximations that are quan-
titatively too crude and that fail to capture the physics of the
problem. Indeed, WKB theory achieves exact quantization
for a restricted number of potentials, such as the harmonic
and Morse oscillators or the centrifugal Coulomb problem.
In the last decade, the application of supersymmetric (SUSY)
methods to quantum mechanics has enlarged the list of ex-
actly quantized potentials to a handful of other potentials,
quantized by employing SUSY WKB [2]. These potentials
are sometimes qualified as “solvable” [3]. However, even in
the solvable cases, the WKB wave functions are innaccurate
especially at the turning points where they blow up, and a
consistent divergence-free WKB scheme is still a topic of
investigation [4]. In the more general nonsolvable case,
WKB quantization has frequently resulted in useful approxi-
mations to compute the energy levels of excited states, but
recently several shortcomings were pointed out: For ex-
ample, the phase loss in the classically forbidden regions is
badly taken into account by the WKB theory in potentials
used in atomic clusters calculations [5]; in cold atom colli-
sions WKB quantization breaks down for very excited states
[6]; for anharmonic potentials, the failure of WKB has
prompted extensive developments of numerically involved
quantum techniques with the aim of obtaining accurate re-
sults (e.g., [7]).

We show in this work that these shortcomings can be
resolved by considering an exact quantum phase. Phase func-
tions in quantum mechanics can be arbitrarily defined
through transformation functions, but theoretical as well as
practical considerations require that the quantum phase bears
a very close relationship to the semiclassical one. Let us take
a one-dimensional conservative system at energy E in a
single minimum potential well, which is our main concern in
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this work. The WKB wave function is built from blocks
given by

Iwre(x, E) = A(x, E)expliS(x,E)/h], (1)

where the phase function S(x,E) is the classical action and
A%(x,E)=(,5)"" gives the classical probability amplitude.
The WKB quantization condition reads

S(t2,E) = S(t,,E) = <n+%>m, (2)

where 1, , are the turning points, u is the Maslov index (gen-
erally two in one-dimensional systems), and n is the level
integer. To improve the approximation, a semiclassical ex-
pansion going beyond these purely classical terms can be
carried out by going to higher order in 7. The procedure,
based on a Riccati transform of the Schrodinger equation by
which the term of order k depends on the derivatives of the
terms of lower order, is well known [8,9] and will not be
repeated here. The salient feature concerns the asymptotic
nature of the expansion, which means that although going to
higher order may improve the accuracy of the results, at
some point the series generally diverge [9]. This is why in
the present approach we will look for a quantum phase by
directly starting from the Schrodinger equation

72y (x) + p*(x)y(x) = 0, (3)

where p(x) is the classical momentum. A transformation of
the Liouville-Green type [10] is taken by writing

y(x) =[8.E00] " w (&), (4)

so that &(x) appears as a “phase” and the prefactor as an
amplitude, as in Eq. (1). Assume w(§) fulfills the equation

12 3gw(&) + R(OW(E) =0, (5)

where the choice of the unspecified function R(§) determines
the choice of w. & then obeys
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h2
R(9(3,€)* - p*(x) + ?(f;@ =0, (6)

where (&;x)= 073x§/ &xf—%(&ffl 3,&)? denotes the Schwartzian
derivative. The choice of the phase first depends on the
choice of the carrier function w [or equivalently, of R(&)],
and then on the choice of the boundary conditions that need
to be imposed on the third order nonlinear Eq. (6). This is an
illustration of the ambiguity suffered by phase functions in
quantum mechanics, due here to the simple fact that there is
no unique manner to cut a given wave function into a phase
& on the one hand, and an amplitude function obeying the
continuity equation a(x,E)=(d,&)~"? (akin to the semiclas-
sical case) on the other.

Formally, £(x) can be expanded as an asymptotic series in
h,

&x) = X &h%, (7)
k

irrespective of the specific choice of R. But if we aim at
making a connection with classical mechanics, it is apparent
from Eq. (6) that the only choice that will give &(x) ~ S(x) to
first order in 7 corresponds to R(&¢)==1, leading by Eq. (5)
to circular or exponential carrier functions. The price to pay
is that the 7 expansion based on these functions, such as the
WKB approximation, necessarily diverges at the turning
points. However it must be noted that contrarily to the
asymptotic expansions, the exact solutions do not diverge. It
is thus natural to set R=+1 and we will use the notation o(x)
rather than &(x) for this particular choice. Still, setting R(&)
=1 (as will be assumed in the remainder of this work) is not
enough to lift the ambiguity of the phase. Mathematically
speaking, the solutions of Eq. (6), for a given R, are distin-
guished by different boundary conditions. For arbitrary
boundary conditions o(x) contains the oscillatory structure of
the wave function y(x), a fact that can be seen by calculating
the derivatives /o, which display violent oscillations. Of
course the semiclassical series do not oscillate—neither the
action S nor the higher order (in £) semiclassical phase func-
tions o, obtained by successive derivatives of S, present
any type of oscillations. Therefore in order to represent the
infinite order semiclassical expansion, we need a phase func-
tion free of oscillations. We draw here on previous work [11]
where the following two points were discussed: (i) the clas-
sical action is the only first-order semiclassical phase that
does not contain oscillatory structure, and (ii) a correspond-
ing property holds for the quantum phase, i.e. there is a
unique phase function that does not contain the quantum
mechanical oscillatory structures. For solvable potentials it is
possible to construct explicitly these optimal phase functions
from the analytic solutions to Eq. (3) (e.g., parabolic cylinder
functions for the harmonic oscillator, Whittaker functions in
the centrifugal Coulomb case [12]). This is tantamount to
choosing the appropriate boundary conditions of Eq. (6) at a
single point (located in the classically allowed region). How-
ever for nonsolvable potentials, a procedure based on explicit
analytic solutions does not exist. We can still follow the strat-
egy employed for solvable potentials, focusing on obtaining
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a numerical solution for the phase function (rather than ana-
lytical) by feeding boundary values at a given point that are
an approximation of the optimal ones (rather than being ex-
actly the optimal ones).

Before turning to the description of the method of calcu-
lation we recall the quantization condition in terms of o,
which contrary to Eq. (2) is exact. Let x span the interval
151,85 (typically ]—o0, +oo[ or ]0, +o[ for radial problems).
Let o(s;)=0, and recall that « is a positive definite quadratic
form that behaves as a(x—s,.;2)—% (see [11] and refs.
therein). Since y(x) is proportional to a(x)sin o(x) [Eq. (4)],
the requirement that at the eigenvalues £ we must have
y(s,,E)—0 gives the quantization condition in terms of the
quantum phase

0(s5,E)=(n+ 1), (8)

where n is the level integer as in Eq. (2). Equation (8) holds
irrespective of the boundary conditions imposed on o. But
when E is not an eigenvalue, o(s,,E) depends on the arbi-
trary boundary condition and can take about any form in
between two eigenenergies. This is in stark contrast with the
semiclassical case given by the left-hand side of Eq. (2).

The computation of the exact quantum phase function
o(x,E) is done by employing a numerical iterative scheme
where the starting function is built from classical quantities.
The iterative scheme is supplemented by semiclassical input
in the form of boundary conditions. For reasons that will
become clear below, the iterative scheme does not directly
solve the highly nonlinear third-order differential Eq. (6), but
applies to an equivalent first order yet complex differential
equation. It can indeed be checked that by writing [we use
atomic units (a.u.) from now on]

M(x,E) = r?x{()'(x,E) + é ln(ﬁxo)] , 9)

Eq. (6) leads to the first-order nonlinear differential equation
oM =i[p*(x) - M*(x)] = F(M(x),%), (10)

where F denotes the middle term taken as a functional. Our
strategy will consist of solving the equation for M; the real
part will give us d,o, which can be numerically integrated to
obtain o, yielding both the wavefunction and the total phase
o(s,,E). To do so we first linearize the equation for M by
expanding the functional to first order in the vicinity of an
initial trial function M(x). We then solve

OF
67x[uq+1 = f(Mq(X),)C) + % Mq[MqH(x) - Mq(x)]s

(11

with ¢g=0 and where ¢ stands for the functional derivative.
Equation (11) is a linear first-order differential equation that
can be solved straightforwardly. Of course since F has been
linearized Eq. (11) is not equivalent to Eq. (10), hence the
subscript in M. Convergence toward M is achieved by iter-
ating the procedure, i.e. we now solve Eq. (11) for ¢g=1,
obtaining a better approximation M,, and so on. This itera-
tive linearization procedure, known as the quasilinearization
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method (QLM) replaces the solution of a nonlinear differen-
tial equation by iteratively solving a linear one. It was intro-
duced three decades ago by Bellman and Kalaba [13] in the
context of linear programming, but the extension of QLM to
the type of functions dealt with in quantum mechanics is
quite recent [14].

To iteratively solve Eq. (11), two ingredients are needed:
first the trial function M(x), second, the boundary condition,
M ,(x;), which is set from the start since it must be the same
for each ¢. The choice of M, though mathematically unim-
portant, must correspond to the expected behavior of the
converged solution. M, is thus built from first-order semi-
classical functions. By inspecting how the real and imaginary
terms behave to first order in 7, we are lead to setting

M(x,E) = [p(0)|[0(x = 1,) 0t = x) +i0(x = 1,) = i6(x = 1,)].
(12)

The boundary conditions are chosen so that M approximately
represents the semiclassical series (for the real and imaginary
terms) on the entire interval ]s;,s,[. The simplest solution is
to pick an arbitrary point x;, deep in the classically allowed
region where the standard semiclassical expansion can be
employed and go to the highest possible order in % before the
series starts to diverge. For example, for the real part of M
we have

k max

&xa-(x)|x=xb = 2 ﬁxa-Zk(x) |x=xbh2k; (13)
k=0

where k,,,, is set by going to the highest possible order be-
fore divergence occurs (with the choice of an appropriate
terminant). More refined methods of estimating the optimal
boundary condition, based on super- and hyper-asymptotic
expansions [15], are, in principle, available. From a practical
point of view, they are not necessary insofar as the behavior
of o, is barely affected by their use. Again, from a purely
quantum mechanical perspective, all the quantum phases, ir-
respective of their behavior, lead to exact results.

We will now illustrate and detail the properties of the
quantum phase on two specific examples. The first example
concerns anharmonic oscillators which are employed in the
investigation of many different phenomena, ranging from
molecular vibrations to quantum field theories and phase
transitions. This has generated different schemes to compute
the eigenvalues and the wave functions, calling for large nu-
merical basis or delicate resummation techniques [7]. The
failure of the semiclassical approximation is important for
the lowest levels: for example, for symmetric potentials x>
WKB quantization gives the wrong behavior of the energies
as a function of m. For anharmonic potentials X2+ Ax2", the
accuracy of the WKB quantization decreases with increasing
\ and m. Going to second order in 7 improves the quality of
the semiclassical approximation, but the relative error is still
high at low energies. For the lowest levels, the standard
semiclassical expansion diverges beyond the second order.
Alternative semiclassical expansions schemes such as the
one based on the phase-integral method also break down for
the lowest states [16]. Hence the interest in working with an
exact quantum phase. Figure 1 shows the total phase o(s,,E)
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phase functions

FIG. 1. (Color online) The total quantum phase of(s,,E)/m
(solid curves) is plotted along with the semiclassical quantization
curve [S(ty,E)=S(t;,E)]/7m+1/2 (dashed lines) for different values
of \: from left to right A=0.01 (red), 1 (pink), 5 (purple), 20 (blue),
50 (light blue), and 1000 (green). The exact ground state energy for
A=1000 obtained by solving o(s,,E)/7=1 is shown by a box and
the triangle shows the WKB quantized level off by 37%. Second-
order quantization reduces the error to about 7% (depending on the
terminant) and the A expansion diverges beyond this order.

at s,=o for anharmonic potentials x>+ \x® at low energy for
different values of N. Given the symmetry of the potential,
we have taken x,=0 and fixed the value M,(x;,) by carrying
out a semiclassical expansion up to o(h'%). The semiclassical
phase is shown as well: Near the solvable potential limit A
=0 the quantum and semiclassical curves are very close, but
as A\ increases the degree of nonsolvability increases and the
curves depart. This results in very inaccurate WKB quanti-
zation values, as compared to the exact ones obtained by
applying the quantization condition (8).

The second illustration involves a potential well with a
strong repulsion at short-range and a long-range attractive
tail. These type of potentials are of interest in the study of
cold atomic collisions, a field that has been sparked by the
development of photoassociative spectroscopy. The WKB
approximation breaks down for excited states near the
threshhold because the wavefunction explores large areas of
classically forbidden regions [6]. As in the first example, the
standard semiclassical series diverge [17] and alternative ex-
pansions like higher order phase-integrals also break down
[18]. We take the following 12-6 Lennard-Jones (LJ) poten-
tial with the classical momentum given in the scaled form as

pZ(x)=B[E—(ﬁ—)%)], (14)

where B is a “strength” parameter encapsulating the mini-
mum and the depth of the potential well. This potential with
B=10* has often been employed as a benchmark (see e.g.,
[17,18]) and is known to support 24 states. The WKB quan-
tization condition (2) gives energies with an error relative to
the local level spacing that globally increases with E. Figure
2 compares the derivative of the quantum phase d,0(x,E)
with the classical momentum d,S(x,E) for the last bound
state just below the threshold. x;, was taken to the right of the
potential minimum and the A expansion was carried out up to
the 12th order. The two curves are barely distinguishable in
the classically allowed region, so we have focused on the
zone near the turning points. Note that the quantum curve
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phase-derivative

FIG. 2. (Color online) Derivative of the quantum phase d,0
(solid black curve) and of the classical action d,S=p (thick curve)
in the 12-6 LJ potential characteristic of cold atom collisions
(scaled a.u.). These quantities, plotted for the most excited bound
state, are shown in the zone near the outer turning point #,=~9.5.
The inset shows the zone near the inner turning point #; = 0.9 (note
the very different scales).

largely penetrates into the classically forbidden region well
beyond the outer turning point. This is typical of excited
states in potentials with a long-range attractive tail and can
be seen as the underlying reason ruling the breakdown of the
semiclassical approximation. Quantization proceeds as above
by determining o(s,,E) on an energy grid, and then solving
for Eq. (8). The resulting curve is shown in Fig. 3 and the
quantized energies of the 24 levels exactly reproduce the
values of exact quantum mechanical calculations [17]. In
particular, the position of the last level determines the scat-
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FIG. 3. (Color online) Exact energy levels (boxes) of the 12-6
LJ potential obtained by quantizing o(s,,E) (solid curve), in scaled
a.u. The inset zooms on the last state below threshold (E=0) and
also shows the WKB prediction, about 40% too low (triangle).

tering length, a crucial parameter in the production of Bose-
Einstein condensates.

To summarize, we have employed a quantum phase that
goes beyond the semiclassical approximation in giving the
exact quantization energies as well as the wave functions. We
have also given a numerical procedure to determine the
phase based on the linearization of the phase equation and a
boundary condition obtained from a local semiclassical ex-
pansion, and illustrated the approach in the case of two non-
solvable potentials.
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