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A semiclassical framework to interpret the spectral rigidity of a system containing a scatterer with internal
states is developed. Our prototype system is a scaled Rydberg molecule in an external magnetic field, where the
core is a multilevel scatterer: the potential sheet in which the outer electron moves depends on the quantum
state of the core. Thus the electron-core collision, interpreted in terms of the diffraction of the semiclassical
waves associated with the outer electron on the core, can result in a change of the electron’s dynamical regime.
We examine the contribution of the diffraction to the spectral rigidity by obtaining the diffractive Green’s
function in the semiclassical limit. We concurrently determine this contribution from accurate quantum spectra
and compare numerically the semiclassical and quantum results. Our findings indicate that, in a system with a
multilevel scatterer, the diffractive contribution to the spectral rigidity cannot be accounted for by a simple
universal expression, but rather depends on system specific nonuniversal terms: the quantum properties of the
scatterer(reflected by the relative values of the phase shifts in the different chanaeds the classical
properties of the shortest periodic orbits in the different dynamical regimes.
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[. INTRODUCTION have an influence in the spectral statisticsias 0. For ex-
ample, Sieber has given the correction to the spectral form

A fundamental property of quantum systems concerns théactor for simple systems displaying geometry-dependent
statistical distributions of the energy levels. On the one handdiffraction [3]; it was also shown that, by including correla-
it is well known that regular quantum systems are characterions between diffractive and geometric orbits, the form fac-
ized by level clustering, whereas irregular systems displagor of a system with a pointlike scatterer was left unchanged
level repulsion. On the other hand, there is ample evidencl the chaotic regimg4,5]; more recently, the effect of lo-
that the spectral fluctuations of the energy levels depend of2lized perturbations in billiards was investigafér].
the nature of the corresponding classical system. The main !N this work, we investigate the spectral rigidity for a

tool employed in connecting both approaches is the Seml§ystem presenting a multilevel quantum scatterer. This means

classical trace formula, giving the modulations in the quan—theeorsrfgtrtefé beenh da(;/rissisat? e?il:]ang;rgeo cwoﬂn sti) ggfeséjei tot;h(; ow
tum density of states in terms of classical periodic orbits 9 y-aep g P

Si f ; ‘ iclassics d ¢ | ~which may exchange energy with the semiclassical waves.
ince for generic systems semiclassics does not resolve g5, hrototyne system studied here will be a Rydberg mol-

dividual states, such methods fail for short-range statisticgcjje in an external field: the excited electron will be treated
(relative to the mean level spacingsuch as the nearest- semijclassically when it roams far from the residual molecu-

neighbor distribution, but should give appropriate results foljar core, but the scattering process between the core and the
longer-range correlations. Indeed, in a seminal work, Bernglectron is treated quantum mechanically. The main feature
[1] showed how long-range level correlations could be obis that scattering may lead to a change in the internal quan-
tained in terms of periodic orbits. In particular, the spectraltum state of the core, in which case the outer electron moves
rigidity A(L), linked to the two-point correlation function in different potential sheets prior to and after the collision.
(and to its Fourier transform, the spectral form fagtovas  Although long-range correlations for the hydrogen atom in a
shown to depend on mean properties of the long-time clasnagnetic field were studied quite eaifl§], very little has
sical dynamicggiving rise to universal behavipand on the been done for nonhydrogenic atoms: numerical results for
short periodic orbitgwhich give rise to a system-dependent lithium were presented in Ref9] along with a phenomeno-
behavioy. logical formula to take into account the diffractive effects.
When a scatterer is added to the system, the potenti&@luctuation properties for Rydberg molecules in field-free
acquires discontinuities. In the semiclassical limit, this givesspace were studied by Lombardi and Selignja€]; how-
rise to additional terms in the trace formula which have theirever, scattering was not treated as a diffractive process but by
origin in the diffraction of the waves on the scattef2). The  means of a classical model that turns out to be valid only for
orbits that hit the scatterer are termed “diffractive,” as op-very high rotational quantum numbers.
posed to the “geometric” ones that exist in the scatter-free We will determine below the diffractive contribution to
system. Although the additional terms in the trace formulathe spectral rigidity, by undertaking exact quantum calcula-
have a highet: dependence, it is known that they can still tions on the one hand and by deriving the semiclassical for-

1539-3755/2004/1@)/04621%14)/$22.50 70046215-1 ©2004 The American Physical Society



A. MATZKIN AND T. S. MONTEIRO PHYSICAL REVIEW E 70, 046215(2004

malism which takes the diffractive orbits appropriately into  The model employed in this work to investigate the spec-
account. In Sec. Il a brief presentation of the model is giventral statistics is that of a scaled diatomic molecule. This
In Sec. lll the diffractive Green’s function is constructed model was described in detail in Refd.3,14, in which we
with the aim of obtaining the additional terms entering thestudied the photoabsorption spectritne density of states
trace formula. This allows us to determine the diffractiveweighted by dipole transition elemeptfer a molecule such
contribution to the spectral rigiditgSec. 1V) by employing a  as H,; we compared the quantum results with a semiclassical
semiclassical approach. Our formulas account both for nonformalism based on closed orbit theory. Here we will use the
universal termgdue to individual short-period orbjtsand  same quantum code to obtain the levels for the scaled mol-
universal termggenerated by longer orbjtsWe then com- ecule in a magnetic field.
pare in Sec. V the rigidity obtained from the quantum calcu- In our scaled molecule model, the molecule is partitioned
lation of the energy levels to the predictions of the semiclasinto an outer electron and the residual ionic core. The core
sical model; by changing the propertigguantum phase can be in one of four quantum states: the ground state has the
shifts) of the scatterer we contrast various situations. We exguantum number®=0, My=M; physically, N is the rota-
amine in particular the effects of elastic and inelastic colli-tional quantum number of the cond,, is the projection ofN
sions on the energy level correlations. We then discuss then the field axis, andl is the projection of the total angular
results and the relevance of the approximations made, amdomentumJ of the molecule on the field axis. There are
conclude. three excited core states; they have the same rotational num-
berN=2, but different projectionMy=M-1,M, M+1. The
three excited states are degenerate in enérgych physi-
Il. DESCRIPTION OF THE MODEL cally amounts to neglecting the linear Zeeman efjfelet is
the only conserved quantum numb@n what follows we
will set M=0). The energy partition leads to the following
The hydrogen atom in an external magnetic field is a wellrelationship between the scaled energig®f the outer elec-
known paradigm of quantum chad$l]. The classical dy- tron associated with different core statés
namics of the electron does not depend independently on its
energyE and the magnetic field strengthbut is invariant ~
(up to a scale factoprovidede=Ey 23 is constante is the €n-0= En=2 T 2(2+ 1)B,. (2.1
scaled energy and the dynamics goes from the near-
integrable(e=-0.8) to the chaotide=-0.1) regime. Using ~Br is the scaled rotational constant, which is obtained by

; —n 213 T 13y A di
scaled variables(r=y? r,p=y "p) in the Schrodinger jrificially scaling the real molecular rotational constéste
equation leads to a generalized eigenvalue problem where ~
. 3_ : . Sec. Il F of[14]). In the present workB, may be seen as a
s replaced byy"=fierr, Which plays the role of an effective arameter that sets the scaled ener ap between the two
Planck constant. Therefore, the scaling property allows us t namical redimes. Note that fét=2 tr?gdg npamical redime
study the semiclassical limit of the quantum problem while y g ' N y g

for the outer electron does not depend on the valudgf

keeping the classical dynamics constant. . . )
: : : . ._but the potential sheet in which the electron moves does
This scaling property still holds for simple nonhydrogenic depend on whethell =0 or [My[=1.

Rydberg atomge.g.,[12]). The outer electron senses only
the Coulomb and magnetic fieldexactly as in hydrogen
except in a small zone around the cditee inner region But C. The T matrix
to a good approximation the core—Rydberg-electron interac-
tion is energy independent, so that in practice the scaling We briefly describe the scattering process between the
properties hold. outer electron and the core. Far from the core, the electron is
affected by the core in one of its alternative core stéjtes
= |NJ-MN.> and senses onlgin addition to the external mag-
B. The model: A scaled molecule netic field the long-range Coulomb field due to the positive

However, for generic atoms and even for the simplesionic core; the orbital momentum of the outer electtois
diatomic molecule, the outer electron may exchange energgoupled to the magnetic field axis, amds its projection(we
with the core, and the quantum state of the core may alsfave M=My +m;). However, in the comparatively very
change. Therefore, in the outer zone the Rydberg electrosmall region near the core, the external field is negligible and
senses only the Coulomb and magnetic fields, but followinghe electron is strongly coupled to the molecular core: the
the collision with the core the energy will change if the en-global molecule is then described in the Born-Oppenheimer
ergy partition between the outer electron and the core irame |a)=|A J.l,). A is the projection of the electronic
modified. In the scaled problem, this involves a change in th@ngular momentum on the molecular axis, on wHighnow
scaled energy of the electron; the collision therefore modi- gquantized. The descriptions in the two regions are linked by
fies the dynamical regime. However, the core—Rydberga unitary frame transformation, with elemefitba)™ that are
electron interaction in the inner zone cannot be scaled, sinceasily determined15]. The upshot is that the short-range
this interaction depends on physical properties of the coréinteraction between the core and the outer electron is best
that are independent of the outer electron’s energy or theescribed in theéa) basis, where th& matrix is diagonal,
magnetic field strength. with elements

A. Scaled electron dynamics in a Coulomb and magnetic field
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1 -e?7Ha quantum state, this gives the diffractive Green’s function for
S“:T' (2.2 simple nonhydrogenic atoms, which have been intensively

investigated and for which a phenomenological global dif-

T, is the phase shift induced by the short-range interactiorfractive contribution was obtainef9]. Our approach will

of the core when the outer electron is described in[the heavily rely on known results obtained from closed orbit
basis. theory[20], a version of PO theory that has been employed
The T matrix, which gives the transition probabilities be- to investigate the photoabsorption spectrum of Rydberg at-
tween states of the outer region, described in|fhébasis, oms and molecules in external fields. However, unlike

contains the scattering information that will be of interest for Gutzwiller's approactj21], which is based on a semiclassi-
the diffraction process. It is obtained from tiematrix by  cal approximation to the propagator written in terms of a

implementing the frame transformatige.g.,[14]) path integral, closed orbit theory relies on the semiclassical
] , approach due to Masloj22], grounded on a semiclassical
T =2 (layT(ali"), (2.3)  approximation to the transport and phase equations. In what

follows, we will use a straightforward identification between
where we have dropped thid dependence on the frame Poth approaches; an elegant and rigorous treatment connect-
transformation and on the resulting matrix. Thus theT ~ ing both approaches was given by Littlejo[28].
matrix depends on the electronic quantum defegciswhich
give the phase shifts induced by the short-range core-electron
interaction in thela) basis. In our model, we assume there
are only two independent quantum defegis: for the state 1. Two-dimensional semiclassical “free” Green'’s function
[A=0,J=1,I=1) and uy; for the stated|A|=1,J=1,I=1).
From the physical standpoint, this corresponds to investigatcO
ing the statistics of states excited from the ground state

B. Determination of the diffractive Green'’s function

In the outer region, the excited electron is subjected to the
ulomb and magnetic fields, yielding a three-dimensional
-y X axially symmetric system; the axis of symmetry is along the
=0,=0,=0) of the molecule, assuming that the outer elec-z axis, chosen in the direction of the magnetic field. We can

tron does not penetrate into the core when2. . .
To sum up, the characteristics of the diffractive scattertherefOre separate the azimuthal degree of freedaith

depend on the two quantitigs; and which in turn de- quantum numbem, the projection ofl on thez axis, and
. ! i, . e azimuthal anglep) and write the “free” Green'’s function in
termine theT-matrix elements between statg$ and |j’) the semiclassical limit as
where|j) and|j’) stand for the four core statéN=0,My
=0), [IN=2,M\=0), [IN=2,My==1).
Go(E) = 2 ImimIGL(r "1 E), (32
m

Ill. THE DIFFRACTIVE GREEN'S FUNCTION

where G(ST) is the symmetry reduced semiclassical Green’s

function corresponding to the azimuthal numbefsince the
The geometrical theory of diffraction for electromagnetic effective two-dimensionglD) potential depends omy. It is

waves in the short-wavelength limit is well establisti&d]. straightforward to show[24] that Gé’;‘) is the usual two-

The use of analogous techniques in semiclassical physics gimensional semiclassical Green's function describing

more recente.g.,[2,17,18). The aim is to extend periodic propagation fronr to r’, which are two points in the 2D

orbit theory in the cases where the semiclassical waves, caaxial plane.G. is given by[25]

ried by classical trajectories, encounter discontinuities of the

order of their de Broglie wavelengths. This diffractive pro- / _ o \-117 |12

cess is incorporated into periodic orbit theory by determining Godr".1,B) = % (hv2m) Dy

the diffractive part of the Green’s function. Indeed, in the )

absence of the diffractive scatterer, quantum properties of the Xexpi[Sdr',r) = w2 = 3ml4]. (3.3)

system are obtained from tligcatterery‘free” Green’s func-

tion Gy(E) in terms of the periodic orbits of the “free” sys- S and yy are the action and the Maslov index for tkih

tem, which are usually termed geometric periodic orbitstrajectory connecting andr’. D is the Jacobian determi-

When the scatterer is added, the total Green’s function is Nnant giving the density of paths; in a local coordinate system
r=(q,9%), whereq(g+) lies along(perpendicular tpthe tra-

A. General remarks

G(E) = Go(E) + Gp(E), (3.1 jectory andp(p*) is the conjugate momentum, we have
where Gy, is the diffractive Green’s function to be obtained
in terms of the periodic orbitéPQO’s) that hit the scatterer. 1 et
These “diffractive PO’s” produce additional fluctuations in Dk‘@ o g 34

the energy spectrum.

In the present section we will determine the diffractive  Equation(3.2) gives the Green’s function for the hydro-
Green’s function for our system—a scaled molecule forgen atom in a magnetic field. Anticipating the multiple-core-
which the scattergithe molecular corepresents many inter- state case, we can write the Green’s function for a set of
nal states. In the limit in which the scatterer has only onehydrogen atoms at different energigsas
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Go(E) = X [imy)(jm|GLd(r",r,E). (3.5 (@)
J

With |j>:|NjMNj> andE=E; +E;, Eq.(3.5) gives the Green’s
function for a sum of independent systems each comprised of
an outer electron at enerdy; associated with a molecular
core at energEJ?‘ which interacts with its outer electron only
through the long-range Coulomb field. This is the “free”
Green’s function in the outer region for our model.

2. Green’s function in the inner region ®) S

In the inner region, near the core, the external magnetic
field can be neglected and the system displays the spherical
symmetry of the Coulomb field with coordinates(r, 6)

(the anisotropy created by the core-electron interaction is
embodied in the quantum defects, which appear as radial
phase shifts The quantum mechanical “free” Green’s func-

tion takes into account only the Coulomb interaction: FIG. 1. (a) shows the potential sheet associated with the core
scatterer in statéj) and (b) shows another potential sheet lying

Gy(rr1,E) = - 167, |jmj> lower in energy associated with the scatterer in sfgie A unit
j source placed at; reaches , either by direct propagatiofdashed
. * + line in (@], by hitting the core while staying on the same potential
X(ij|f|j(r1)Y,jmj(ﬁl)glj(rz)Y|jmj,(02), sheel[s(ol)i]d Iir):e in(a?, elastic scatteririg oyr b?/ changing to arr)wother
(3.6) potential sheet after the collision with the cgselid line fromr, to
the core in(a) and from the core to, in (b), inelastic scattering
wherer,>r; andY, , (6) stands for the spherical harmonic (c) shows schematically the matching between the semiclassical
Y|jm_(0i,0). f, and g, are standing Coulomb waves, respec-waves outside the boundary circle and the quantum mechanical
tively regular and irregular at the origin, agfl=(g,+if,) are ~ wave function in the inner zon@ee tex\
outgoing and incoming Coulomb waves.
If we now take into account the short-range interactionsfecting the state of the scattergtotted line in Fig. 1a)] is
the total Green’s function is given in the inner zone by pro-due to the “free” Green’s function; this is the standard situ-
jecting the resolvent equatidB=Gy+GyT Gy, yielding [26] ation which will not concern us in this paper. Tledastic
diffractive trajectory[solid line in Fig. Xa)] linksr, to r,
G(ra,ry) =-16m>, |jmj>g|+j(r2)YIjmj(92){2 EIMGY via a hit at the core, without changing the state of the core.
i i’ The trajectory arrives near the scatterer at some paint
=(ro,6;) and leaves the core region passing through
=(rg, 6;) [see Fig. 1c)]. rq is the radius of a boundary circle
within the inner region but for which the approximations
Note that the labehn; in |jmj> is redundant, sincé/=M,; made in the outer region still hold4,20. The third type of
+m; is fixed; we shall therefore subsume under the labej.  trajectory is thenelasticdiffractive one[Figs. Xa) and 1b)]:
Of course, Eqs(3.6) and(3.7) can also be written in thgy)  the electron arrives on the core in stgtdFig. 1(a)] but
basis. A solution|zp,-> of the full Hamiltonian in the inner leaves the inner region with the core in statgFig. 1(b)].
zone is related to a standing-wave solutioif,—) Usually inelastic scattering is accompanied by a change in
=f,j(r)Y,jmj(6)|j> of the scatterer-free Hamiltonian via the the potential sheet in which the electron moves.

+T“-fgg,(rmvrj,mj,(alxj’mﬂ}. 3.7

Lippman-Schwinger equation To find the Green'’s function in the inner zone, we proceed
B as in closed orbit theorge.g., Sec. 11l D off14]), except that
|‘/’J>— |§i>+GOT|§J’>- (3.9 here the initial wave is a unit source placedrat On the

boundary circle, the incoming wave stc(rf,rl,Ej)U) with
G, given by Eq.(3.3). On the other hand, in the inner region
the most general solution is given by the styc;|i;.)

Equations(3.5) and (3.7) cannot be connected directly, where thdy;.)’s are given by Eq(3.8); the expansion yields
since the relevant Green’s functions obey different boundary

conditions. We will rely instead on closed orbit theory tech- Y m (O L8, (0 +T0, (0] (3.9
pmeTA i i
' i

nigues and consider the following physical situat{fig. 1). j

3. Connecting the inner and outer zones

Let the core be in stateandr; andr, two points in the outer

region. We want to find the waves arrivingratproduced by ~ The coefficientsc; are now determined by matching the in-
a unit source placed at;. Semiclassically, there are three coming part of this expression to the incoming semiclassical
types of waves carried by three different types of trajectorieswave function. This match is done in the stationary phase
The direct propagation from; to r,, obviously without af- approximation(for each incoming trajector¥, the integral
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on ¢ is performed along the angle of stationary phagg. 1) =527 S i 21280\ o1 sine. Gl
This gives Youlr 2) \ ?“ >% ak \N<lg iq7sdq)
¢ = 712 meriml2g012 52, 12 8l X (I 3,70, 6 Ej) Gl (T, O T 1, Ep). (3.1

. * J . )
X% S ekalimi(af'k)GSdk)(ro’ Ohir 1), (310 4. Diffraction coefficient

i The content of Eq(3.17) is the following. A unit source is
]
where we have denoted I3 the kth term of the sum placed at ; with the core being in statig¢). These waves are

over the trajectoriesi.e., the expression to the right of the caried by classical trajectories; some of these trajectories,

sum symbol in Eq(3.3)]. _ labeledk, hit the core with an angl@;,. Those trajectories
The outgoing wavéfrom the region near the core toward are continued in the region near the core by the quantum
r2) is given by the core-scattered part of K£8.9), mechanical scattering process, which results in outgoing

B . . waves, propagating semiclassically along trajectagiesith
Poulr) _.2,: i >Yljfm,-/(‘9)z CJTii’gljr(r)- (31D the core now being in a stal§). Your2) gives the wave
) ! function atr, resulting from the superposition of the possible
Beyond the boundary circle=(rg, 6), this outgoing wave is statedj’) populated after the collision. The Green’s function

propagated semiclassically. Applying Maslov's theory, weG_D corresponding to this diffr_active process is given by sum-
write the wave function in shorthand notation as ming Eq.(3.17) over the possible quantum states of the scat-

terer,
- . J-r . i _ J-r _ .,
Youlr) JE, ! >% pq (1) €xpi(§; = pq /2 = 3ml4), Gp(rarB) =22 Glyq(r20;E)
i’ ak
(312 i")Cli(| Gl
X|jCL|CLg0(0,r 1;E),  (3.18
where the solution of the transport equation for the density G Uty
gives[22] where of course energy conservation requires tBaE;
Lt 80 +E; =Ej +E;,. We have denoted by
i'(py= 3207l g 1 , O
Py (r) Jg(t,aiq) Po (0|q)- (3.13 qug = ﬁ\“'Zﬂ'hZag\*yzro sin 6, (3.19

(pg)lIZ is the wave function on the boundary cirgleith the  the diffraction coefficientC depends on the angles of the

core in statdj’)). J; is a three-dimensional Jacobian, given incoming and outgoing trajectories and on the quantum
by Js(t, i) =r2sin 6J(t, 6), whereJ(t, 6) is the standard states of the core that determine the value of Th@atrix

Jacobian in the 2D plane: eIementTj,j. We Ch_ave used the fact thatdfis in the outer
regionS(0,q) = \8ro+S(rq, 6;q) [14,27 to absorb the coef-
ficient €80 in the Green’s function, which now formally

' (3.14 propagates from the origin at=0. Note that the diffraction
coefficient also depends ap, which gives the internal scale

Equationg3.13 and(3.14) describe the divergence of neigh- of the inner zone diffraction. However, as is known from

boring trajectories starting on the boundary circle at tigie closed orbit theory for the photoabsorption cross section, we

and arriving atr at timet, and are thus akin to the determi- show below that the density of states does not depeng.on
nant appearing in the semiclassical Green’s funats@® Ap-  Finally, it may also be noted th&y, is of order\# relative to
pendix A). the “free” Green’s function.

Using the asymptotic expansion fgf (ro) in the zero-

energy approximation as ifi4], we have

ar, 6)
at, 6,)

J(t, qu) = det]

C. Diffractive density of states

1. Density of states

Js(to, ) pl (rg) V2= € 80>, ZHIGL (1o, Byt 1,E; . .
[3s(to, fla)eo (Fol] ; ak Gaato (o, O T, E) The fluctuation in the density of staté®@OS)—formally

proportional to IMiTrG]—is obtained in the semiclassical

(319 Jimit by taking the trace 0., as[25]
with 1
do(E) = =—— >, A, expiS, + c.c. (3.20
ngj = ;1021293 7302641 ) 2mh "
' with
X ysin aqu|j,mj,(9iq)Sln kaYljmj(afk)Tjj ’ _nexp _i(/Jvk + O'k)’7T/2 (3 21)
(3.16 T |detMg - D2 '
where we have used E(B.10. We finally use Eq(A5) and  and where c.c. stands for complex conjugate and will be
put the outgoing wave€3.11) atr, as implicitly understood in the rest of the paper. We have as-
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sumed the orbits are isolatekd;runs on the periodic orbits sical orbits of the scatterer-“free” system. This is a general
and their repetitions and, is an additional phase resulting characteristic that is found in other works based on the geo-
from taking the traces, is the period and the 2x 2 sta- metrical theory of diffraction. For completeness we point out
bility matrix of the orbit with elementsn,,. When diffractive  that the formulas given above between E§s10) and(3.25
effects are present, the total Green’s function is given by th@eed to be modified wheh is the so-called parallel orbit
sum G=G,+Gp; the geometric DOS is given by [MrGy],  (6=6;=0) [14,29

yielding Eg.(3.20, whereas the diffractive contribution to

the DOS is obtained by taking the trace G,
IV. DIFFRACTIVE CONTRIBUTION TO THE SPECTRAL

2. Taking the trace of G RIGIDITY

To take the trace of Eq3.18), we first use the orthonor- A. The spectral rigidity A(L)
mality of the stategj) and reduce the problem to two dimen- . . .
sions[24]. We can then set=j’ andk=q, yielding 1. A(L) in terms of periodic orbits

The spectral rigidityA(L) is defined as the least-squares
TrGp = >, >, Cl f dqqustdk)(r ;O)Gisdk)(o;r) deviation of the staircase function from the best-fitting
ik straight line over an energy range corresponding tmean

(3.22 level spacingg2§],

where(q,q*) are local coordinates along and perpendicular d) (o2

to the trajectory introduced in Sec. 1l B 1. inen the reduc- A(L) = mian de[Me) - A —BJ? ),

tion from 3D to 2D, we choose for convenient®, ') so AB L JorLizg

that relative to the cylindrical coordinatés,z) the Jacobian (4.1)
is d(p,2)/d(q,q*)=(r sin#)~L. The integral can now be per-
formed, for each trajectory, in the stationary phase approxi-
mation(a similar calculation is given in full detail by Bruus . : .

and Whelar{18]). To first order in%, we obtain the approxi- denotesl an-avera?(e over the starting poigts\(E) is the
mate folding property for the semiclassical Green’s function:SPectral staircase function,

TrGp = 2 > ClnGly(0;00(i7) ™. (3.23
ik

where(d) is the mean density and the outer angular bracket

E
NME) = f ded(s). (4.2

The diffractive DOS is thus given in terms of the geometric

(“free” hydrogeniq orbitsk closed at the nucleus associated 5(L) describes correlations between level sequences longer
W|th every p035|_ble quantum_stadqe} of _the scatterer, than the mean level spacirig)%, i.e., L>1. Berry [1,30]
weighted by the diffraction coefficiel@}),. As in closed orbit showed that, provided the energy rariged) is classically

theory, the classical orbitk that hit the center of the core . . y
(r=0) are radial in the vicinity of the core: they leave the small(though it may be semiclassically lajga(L) could be
' obtained in terms of periodic orbits as

boundary circle with an initial angl®, and return with a
final angle 6.

Equation(3.23) can be writter{see Appendix Bin a form AL) = 1 (" d_vK(V/WL)G( ) 4.3
similar to the geometric DOE3.20): T2m2)y v oval :
1 . .
do(E) = ﬁz % Al expis (324 \yherew=L+/(27(d)). The “orbit selection” functiorG(v) is
. . given in Appendix CK(¢) is the spectral form factor, defined
with as the Fourier transform of the two-point correlation function

122 e3mi) (with Z=7/h(d)). In the semiclassical limit({) is approxi-
Al= R e T Yiym, mately given by[30]

i i 1/2
X(Bik)YI*jmj(gfk)TII-<25/2773/2 %ﬁ(:eﬂ( ; 1 . ) ( Tk‘”')
525 KO=5—3 %AkAqexm(sK—sq)/h]a =),

my, is an element of the stability matrix for tHeh orbit, (4.4

calculated by considering a deviation in momentum space

perpendicular to the orbital motion. It may be noted that thewith the factorsA given in Eq.(3.21).

diffractive contribution to the DOS 2 suppressed relative  Different approximations foK(¢) have been discussed in
to the geometric DOS and that it does not dependos  [30]. They are appropriate for different valuesfol et {* be
expecteddp(E) depends on the quantum properties of thesuch thatry,,/h(d) <{* <1 wherey, is the period of the
scatterelvia the T matrix) and on the properties of the clas- shortest orbit. Then
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1 5 origin, but the amplitude factors enteritg({) are differ-
K(¢) = @E A a(r=m), {<i*, (4.9 ent; we use a classical sum rule for off-diagonal contribu-
K tions, adapted from the one that was obtained by Bogomolny

et al. [4]. However, we cannot obtain a semiclassical sum

K= ¢ <i<1, (4.6)  rule without taking into account the correlation between geo-
metric orbits that do not hit the origin and that make up
KO~=1, ¢(>1. (4.7 AyL). Here, we restrict our attention k(L) and we will

not therefore search for a semiclassical sum rule; as a result,
the determination of\yp(L) and App(L) will hold only for

L> 1. The constant term arising from the semiclassical sum
rule is of no importance: in Sec V we compare the difference
(see Appendix ¢ Equation(4.6) is valid for long (but not ~ A(L;T)~Ac(L) obtained from quantum mechanically calcu-
too long orbits and follows from a classical sum ryd] in lated energy Ievels for systems with and_ without the scat-
the diagonal approximation, which leaves no trace of any€rer- As argued in Sec. V A and Appendix D, the constant
system-dependent dynamics; from E¢,3), this form essen- term can be taken to be the same in both systems, and there-
tially contributes to the rigidity in the interval€L <L,  [oré vanishes when the difference is taken.

The form(4.7) is valid for long orbits beyond the Heisenberg
time and is obtained by appealing to a semiclassical sum rule
[1]; it contributes toA(L) for small values ofL, but also The advantage of scaling the system is that the classical
contributes to rigidity through an additive constant term.  dynamics is invariant provided the scaled eneegyg fixed;

the scaled amplitudes and actio?\s;s) and ~S(e) are then

2. Geometric and diffractive contributions constant and the levels are obtained as a function of the

Since the total fluctuations in the spectral DOS are giverParametew =y > x is varied in the intervalxy, x,] andx’

by d(E)=do(E) +dp(E), the same relation holds for the oscil- is the midpoint. The scaled action, defined ba;B(e)
lating part of the spectral staircase function. It then follows= S(E)/#, plays the role of both the actid®and the period
from Eq.(4.1) that the spectral rigidity is obtained as the sum 7 of the unscaled orbit, and plays the role of the energy and

Equation(4.5) is the diagonal approximation, which is valid
for short periodic orbits and gives rise to nonuniverga.,
system-dependenterms; in particular, the shortest orbit de-
termines the spacing .« for which the rigidity saturates

1. Rigidity in scaled variables

of three terms: of #; in the following, the notatiork.s; stands for the mean
_ valuefio=x * of k1 in the interval[ ky, k5].
A(L) = AgolL) +Aop(L) + App(L). (4.8 The oscillating part of the scaled DQ&t fixed €) is
Ag(L) is the rigidity for the “free” system: it involves only
correlations between orbits of the free system, so that for ~ 1 R G L CH
Koo() the indicesk and q in Eq. (4.4) refer to geometric dl) = 277? %Ak expixS+ A expixS (410

periodic orbits.Agp(L) involves correlations between geo-

metric and diffractive orbits so that in the spectral form fac-with [cf. Egs.(3.23 and(3.25)]

tor k and g refer, respectively, to geometric and diffractive

orbits. In the same veiM\pp(L) involves only correlations - é(exp =iy + o) /2

between diffractive orbits. In this work, we are interested ~ 112 (41D
only in the contributiomA (L) to the spectral rigidity pro- |de(M = 1)]
voked by the presence of the scatterer, which is the same as |
the difference between the spectral rigidity for the system
and the rigidity for the scatterer-free system, since ;‘L _ ﬁléﬁe—i(,u,{;w/2+&r/4)'rjjyl o ( gik)yl*
e m: m:
Agirr(L) = A(L;T) = Ago(L) = Agp(L) + App(L); (4.9 sing SJn] ) 1,12 :
in 6 si
we have explicitly writtenA(L; T)=A(L) to emphasize the X () 2%%m%? %( (4.12
12(k)

the scatterer dependence through Thmatrix.

It is straightforward to obtain the rigidity by following the
B. Diffractive spectral rigidity for the scaled molecule original derivation leading from Eq4.1) to Eq. (4.3 [1]
. . . actually, the derivation is simpler for scaled systgn$ince
We now determined (L) for our model described in ( Y b led syste

Secs. Il and Ill. We first need the scaled equivalent of the?he §caled spectra will be unfo'lded, we pd)=.1, and k,e,ep
formulas given above. We then use the following approximaln mind thatL scales asd) previous to unfolding; the rigid-
tions. ForApp(L) we employ the diagonal approximation for ity (4.3) is obtained by summing terms of the form
diffractive orbits. We obtain a classical sum in the isotropic "

approximation by relying on previous results obtained by A :ij d_”MG(V) (4.13
Sieber[3]. For Agp(L), we restrict the correlations to orbits T o2 o v vmlL '
having the same action and the same topology; this has the

effect of taking into account the sole closed orbits at thewith
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1
yv=—, (4.14 (L) = 277)(] doG(wLo), (4.19

g

where y=&N)/dx. We will from now on omit the tildes which is given in the semiclassical limit by E(C7).
from the scaled variables, as no confusion can arise. The
index XY obviously refers t&X,Y=0 orD [cf. Eq.(4.9)]. The 3. Determination ofAgp

spectral form factor is now given by The short-orbit contribution tdyy is similar to the short-

1 o o orbit contribution toApp: as above we neglect correlations if
Kxv(0) = =—{ 2 2 {ak Al * expli(S, - §))xol}s j#]' and, although the amplitudes of the geometric and dif-
2mx i’ ka fractive orbits are different, the sum runs on the same orbits
o, closed at the origin: we neglect correlations between diffrac-
S+ % tive orbits and geometric ones that are not closed at the ori-
X| S- , (4.15 .
gin. Hence, foro<o*, we have

where AL, stands forAl if X=0 and Al if X=D; now we i_—ZA{;(ej)[A{((EJ)]* G(%)
haveo=S/2my. Here the angular brackets denote an average | ke{ogeo*} 27 [Sk(€))] 2x
over the starting pointsg. (4.20

2. Determination ofApp For longer orbits, we need the relevant classical sum rule.
. . L . Starting from Eq.(4.15, with X=0, Y=D, and j=j’, we
Strictly, the diagonal appro?(lma'flon would involve ne- assume thaKqp has significant contributions from orbits
glecting correlations wheneved, # S,. We use the further jith close actions, so that
approximation of neglecting correlationsji# j’: orbits be-
longing to different potential sheets are not correlated. For P o 1 P
the small values o§ that contribute to the nonuniversal part, - Sl T EW(’Q’ 6) 6",
this approximation holds except if accidentally two orbits
belonging to different potential sheets have the same actiotvhere W is the matrix of mixed second derivatives of
For larger actions, this approximation appears necessary r,r’'). We also express the stability matrix element
classical sum rules are to be used at all. 1/mi,,, taken on the boundary circle as
For short orbits(c<o* with ¢* <1) the diagonal ap-

(4.21)

proximation simply gives terms of the form |mj 12 &ZSL 12 /E (4.22
j 2 ' Haw 96,96 o '
s 1 | Ale) G(Li(ej)) (4.1
7 kel 272 Se) 2y ) : and further remark that
2o | 1/2
For longer orbits, the classical sum rule needs to be evalu- |de(MJ®_ 1)[2/2 det’g_gK, = |det\(6, 0")| V2.
ated independently for each quantum stgtef the scatterer 3696
(since for eachj) we have an independent classical problem (4.23

of an outer electron with scaled energy moving in the _ . _
given diamagnetic potential shgete further assume an We can now use the generalized sum rule obtaingdin

average initial and final anglé=/4. We now use the sum 5(S-9)0) 1 _
rule for transient orbits given if8]; since the initial and final > ( SL)j (G Pl =5 f dgtdpQ¥(q,p),
velocities are given by=+2/r (in the inner zong we have k |de(M(k> =1 x
for each|j) (4.24)
1 2 in which the DOS amplitude is multiplied by a “test func-

>

k

rnjl 2(k)

AS-F) = Si(e)’ (4.17) tion” Q(qy,py) defined on a surface of section that includes
: the scatterer and is orthogonal to the incoming trajectory.

whereZl(e) is the volume of the energy surface in the scaledThe obvious choice fof2 is to take the terms between braces

phase space with scaled energywhich can be determined in the sum(4.15 multiplied by [de(Mj,-1)|. Note that,

classically. The form factor then becomes since we have assumed that the trajectories are radial when
1 1 they cross the boundary circle, the integration measure trans-
Ki S g* )~ 5o 25 T 2lY, (942 verse to the motion of_ the orblt_ is reduced_ to
bol7 > 0") x e ) 2" il im0 sin 6\ro/ (4+4 cosf)dd. Ko is then obtained by summing

over the quantum statgsthe right-hand side of Eq4.24).
We use again the average angle approximatienr/4, and
The rigidity App is finally obtained by integrating the re- Eqgs. (4.21) and (4.23 then lead to a Gaussian integral.
maining term in Eq(4.13), Hence

(4.189
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. -1 29123 1 cf. Eq. (4.8)], and for the system with the scatterer on the
Kp(o>0*) = ?h /—2 21'(1—“ T other hand[we then obtain the rigidityA(L; T)=A(L); cf.

X2 Eqg.(4.9)]. The quantum mechanical determination of the dif-

><|Y|_m_(0)|282. (4.25 fractive contribution to the spectral rigidity is therefore given

by calculating the differencA(L; T)-Ayy(L). Following Eq.
Note that we took the average valwe=7_7; for the starting  (4.9), this difference should be equal in the semiclassical
points «,, so that the Gaussian integration brmgs about dimit to the sumAyp(L) +App(L). However, as mentioned in
factor %gﬁ which multiplies the original factofilff in Eq. Sec. IV A, the semiclassical expression for the rigidity in-
(4.20. The rigidity is obtained by performing the integral volves the contributions of orbits with periods beyond the
(4.19. Heisenberg time, which are taken into account through the

relevant expression of the form factor obtained from a semi-

C. Results classical sum rule due to Berfil]. According to the semi-

classical sum rule, those long orbits generate the mean level
density. Based on the numerical evidence that the systems
with and without the scatterer have approximately the same
mean density, we assume that long orbits do not contribute to
the diffractive part of the spectral rigidity; this heuristic ar-

We now summarize the theoretical results for the diffrac-
tive spectral rigidity obtained in the semiclassical limit. Col-
lecting Eqs.(4.16), (4.18), (4.20), and(4.25 along with Eq.
(4.13, we obtain

gument is developed in Appendix D. The upshot is that we
App(L) + Agp(L) = >, { > 2(Re[AkA ] can compare the quantity(L;T)-Aq(L) obtained from ac-
I L kefoy<o} [WS“ curate quantum mechanical calculations to the semiclassical
L 3< eV (5)|2 9xpressior(4.26) provided we are interested in correlations
+ AL |2)G( )} D eff '2; in the rangeL> 1.
j T

B. Results
><(2571-4|T”|2|Y|jmj(0)|2 1. Calculations
We calculated a set of eigenvalues for a scaled molecule
in the symmetry stat® =0, with a rotational constant cho-
+ 37 lmTJJ>I(L)]’ (4.26 sen so that the scaled energies agg,=-0.55 andey-,
=-0.8, in the rangex=80 to «=150, with averagefi.ss
whereZ(L) is given by Eq.(4.19. The term between the ~0.01. Such calculations involve about 10 000 states. The
curly brackets represents a system-dependent nonuniversgdmputational method was described elsewhitd]. y
contribution, which contains the shortest periodic orbits=148.8 is readily calculated by fitting the spectral staircase
within each potential shegj) (from the shortest scaled ac- to a second order polynomial ia Classical calculations for
tion S, up to some scaled actioB” <2my). This term  the shortest orbits are necessary to determine the nonuniver-
depends on the scatterer properties through the diffractivgal contribution; these include the actions, monodromy ma-
amplitude A}. The term between square brackets gives arix elements, and Maslov indices of the orbits closed at the
contribution coming from averaging over orbits with scalednucleus in the scaled hydrogenic problem at the relevant
action 9>, but shorter than the break timer®. It is  scaled energies is determined for the relevant values of
universal in the sense that it does not depend on the indihe scaled energies from the surface of the energy shell in
vidual properties of the orbit, although since this is a diffrac-configuration space.
tive contribution it obviously depends on the scatterer prop-
erties embodied in th@ matrix. It may be noted that the 2. Results

nonuniversal term depends épy; (through.A}), whereas the  Quantum results for the spectral rigidity are plotted in Fig.
term between square brackets is mdependenﬁtgﬁf indeed 2 for different values of the quantum defects, i.e., for systems
Z(L)~ x [Egs.(C6) and (C7)], and x scales adigf;, so that  wijth cores having different properties. Indeed, it follows

11/27T3

whentie is variedfy, is constant. from Egs.(2.2) and(2.3) and from the unitarity of the frame
transformation that ifus =y the T matrix is diagonal in the
V. NUMERICAL RESULTS scatterer quantum numbek§ My: from a physical stand-

point, this means there is onlglastic scattering, i.e., the

electron stays within the same potential sheet when it scatters
We give in this section numerical results obtained for ouroff the core. Whenus # up, the T matrix is not diagonal and

model by comparing the spectral rigidity obtained from amixings between Rydberg series belonging to w0 core

calculation of exact quantum eigenvalues to our semiclassitate on the one hand and tNe2 (My=-1,0,1 core state

cal approximation as given by E¢.26). More specifically, on the other occur; physically, this means both elastic and

as stated in Sec. IV A 2, we are interested only indHfrac-  inelastic scattering occur, the relative strength between them

tive contribution to the spectral rigidity. Quantum mechani- being determined by th&-matrix elementsT};..

cally, this involves performing calculations for the scatterer- Figure 2 shows the value of the spectral rigidity deter-

free system on the one hafde obtain the rigidityAyy(L); mined from quantum mechanical calculations. Figufa) 2

A. Comparing quantum and semiclassical results
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L FIG. 3. Diffractive contribution to the spectral rigidity for sys-
tems with different scatterers whose properties depend on the values

FIG. 2. Spectral rigidity determined from calculated quantum©f the quantum defects: going from the most rigid to the less rigid

spectra(a) The black solid curve corresponds to the scatterer-freesPectrum we haveus=0.22u;;=-0.06 (dashed curve us

system whereas the curves underneath correspond to two exampfe8-5 #ii=0 (dotted curve, us=u=-0.25 (upper solid ling, us

of systems with equal quantum defects allowing only for elastic=0-5 xi1=-0.15(dot-dashed curyeand us = u;;=0.5 (lower solid

scattering: us = uy;=—0.25 (upper ling and below ws = =0.5 line). (a) shows the results obtained from quantum calculations by

(lower line). The straight dashed line is theé15 limiting curve.(b) subtracting the curves for systems with scatterers in Fig. 2 from the

The black solid curve corresponds again to the scatterer-free systepgatterer-free system lingo) displays the semiclassical results ob-

and the curves underneath to systems with scatterers allowing fd@ined within the approximations discussed in the text.

inelastic scattering: from top to bottonuy=0.22 u;=-0.06

(dashed curve us=0.5u;=0 (dotted ling, and wux=0.5u its bifurcation point from the orbit parallel to the figldrhe

=-0.15(dot-dashed curyeln each case, the inset gives an enlargedsaturation of the diffractive rigidity visible beyond~ 275

view of the rigidity for smallL. corresponds to the shortest orbit existing in the2, M|
o =1 potential sheets; the contribution of the orbits in the
shows the rigidityAoo(L) for the scatterer-free systetblack =2 M =0 potential sheet is considerably less important, due

solid line) as well as two examples of a scatterer allowingtg the fact that the orbit perpendicular to the figde main
only elastic scatteringus=u=0.5 and us=un=-0.29.  orhit at e=-0.8) is suppressed in the diffractive process
Figure 2b) again showsAg(L) as well as three cases of ywhenm=0 [32]. Note that in the casgys=0.22 u;;=-0.06
systems with a core allowing also for inelastic scattering the curve saturates at~ 50 rather than displaying an inflec-
#s=0.5un=0,u5=0.5,u3=-0.15, and the b molecule tjon: this is readily explained by the fact that, for such values
case with quantum defectgy=0.22,u;;=-0.06. The ge- of the quantum defects, tHE-matrix elementsT,,; ,.; are
neric shape of these curves shows an inflection ardund very small and therefore the contribution of the=2, |M|
~50 and saturation starting at~275. This is semiclassi- =1 potential sheets to the diffractive rigidity is negligible;
cally related to the saturation of the orbit selection functionthe orbits associated with the scatterer in tHe0 state
for each dynamical regime. dominate the shape of the curve, and the second saturation at
Figure 3a) shows the differenceA(L,T)=Ap(L) for | ~275 is hardly visible. Generally speaking, the slopes of
quantum calculations, which we defined above as the diffracthe curves in the three main intervals<50,50< L <275,
tive contribution to the spectral rigidity. Figurg8 displays  and saturation folL>275) depend on the strength of the
our semiclassical results, obtained by appying@®6). For ~ T-matrix elements. They also depend on the relative
each dynamical regimge-o=—-0.55 andey-,=-0.9, we in-  strengths of the universal and nonuniversal terms. In particu-
cluded about a dozen orbits, so that in the correspondingir, note the crossing dt~200 between the curves corre-
hydrogenic cases* =0.1. The main features of the quan- sponding to scatterers havings=0.5 u;=0 and us=uy
tum results are well reproduced by our semiclassical calcu=-0.25, which is adequately reproduced by the semiclassical
lations: in particular, the first inflection dt~50 and the calculations. This crossing results from the competition be-
saturation at ~275 are clearly reproduced. The first inflec- tween the nonuniversal and universal terms; the nonuniversal
tion is due to the saturation of the orbits associated with theerms(which dominate the curve for larde are larger in the
scatterer in theN=0 state. Application of Eq(C3) for the . =u;;=-0.25 case, whereas the universal terms are consid-
dynamics atey-o=—0.55 would, however, yield a larger erably larger for a core scatterer with =0.5 uy;=0.
value of L= than is observed in both the quantum and the
semiclassical calculations. The reason is that the shortest or-
bit (perpendicular to the fiejchas small geometric and dif-
fractive amplitudes compared to the large amplitudes of the We have seen that the semiclassical formalism developed
longer balloon orbitfwhich lies in scaled energy just above above gives an adequate explanation of the diffractive rigid-

C. Discussion
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ity obtained from the quantum mechanical levels. We now r
discuss further aspects, and in particular the limitations of
the results presented in this paper.

The main limitation, not yet mentioned, concerns the sen- I
sitivity of Eq. (4.26) to the number of orbits included in the
nonuniversal part oAgp+App. As more orbits are added, \ ¢
the curves for the diffractive rigidity tend to be translated |J> i
(generally downward In his discussion of this tiny but im-
portant range composed of nonuniversal terms, BEBG}
pointed out that the final result would be independent of the
number of orbits included in the nonuniversal part, provided
the condition{ < * was respectedisee Eq(4.5)]. This was " 4
not the case here, and although the shapes of the different
curves were not modified when the number of orbits in-
cluded in the nonuniversal part was increased, the value of
AgptApp on the vertical scale changed, since the curves
underwent an overall translation. To plot Fighg we have
accordingly rescaled the semiclassical results so that the
saturation value concords approximately with the quantum
results. We emphasize that all the semiclassical results were
multiplied by an identical global factdso that the rescaling
is related only to the number of orbits in the nonuniversal ) _ )
term independently of the scatterer propeitic&he reason _FIG. 4. Example of a hlgher-prder process Wlth multiple scat-
for such a behavior may be related to the fact that our scalet§ring: a wave travels from; to r, in the same potential sheet after

energies correspond to a phase space of mixed type: instea&attering twice with the core and having followed a closed orbit in

of having amplitudes exponentially decreasing with the pe—anOther potential sheet.
riod (as would be expected in a chaotic regjpmur classical
calculations display strong focusing effects, yielding largeeffect than for smaller values of tiematrix. Note that such
amplitudes for certain orbits or their repetitions, indepen-orbits can involve combinations of closed loops belonging to
dently of their lengththis is of course typical of stable orbits different potential sheetg.e., built on different core statgs
in mixed phase spageMoreover, we have employed classi- @s portrayed on Fig. 4. On the other hand, due to the scaling
cal sum rules generally valid for a chaotic phase space in Broperties of our problentin particular, the scaled phase
mixed phase space situation. Indeed, the ergodic average,Space volume does not depend &) we do not expect a
propeﬂy done, should not be taken on the entire energy Susignificant contribution from the mean properties of Iong or-
face, since a fraction of the orbits are confined to invariand®its with multiple core scatterers, obtained by successive ap-
tori (but then it is not obvious, given the approximations plication of the classical sum rulg8].
made, how to derive mean properties of a typica| Or@f It was recently shown that in chaotic systems with a
course, the derivation of the diffractive Green’s function ispointlike interaction(a & scatterey, the off-diagonal contri-
valid regardless of whether the classical motion is chaotic oputions to the form factodiagonal or geometric correlations
not, provided the diffractive orbits are isolated. We also noteencapsulated here o) canceled exactly the contribution
at this point that exploring the chaotic regirehich would  arising from correlations between diffractive orhiesicapsu-
be more meaningful for comparing quantum and semiclassiated inKpp-like termg [4,5]. The underlying reason for this
cal results from a quantitative standpginould involve  effect, due to the conservation of the probability during the
quantum calculations at higher scaled energies, and therefof§attering process, is based on the unitarity relations for the
higher energies i is kept constant, which would be com- (single channglT-matrix element. It is therefore of interest
putationally too expensive. to see whether such a cancellation occurs in the present case.

Another limitation is visible by observing the curve for In the multichannel case, the unitarity equation for the diag-
ws=up=0.5, which is relatively larger in the semiclassical onal elements readS3]
calculations than the quantum results indicate. The most

ImT;; + > |T;[*=0. (5.1)
I

probable cause for this mismatch is due to the inclusion of a
single scattering in the formulas derived in this paper. In-
deed, although each scattering process is reduced by a fac®herefore, comparing with Eq4.26), we see that in the
#172 [cf. Eq. (3.25), for finite values of# diffractive orbits  general case, to lowest order #) there is no cancellation
with more than one core scatterer will need to be included ibetween the geometric or diffractive correlations and the “di-
the T matrix is large ormy, is very small for the orbits in- agonal” diffractive correlations because of the nondiagonal
cluded in the nonuniversal term. Fpk =u;;=0.5 the diag- T-matrix elements, and this is indeed verified in our calcula-
onal T-matrix elements are maximally large, and fer tions. Comparing Eq5.1) with Eq. (4.26), we see, however,
=-0.55 many of the shortest orbits have a large classicahat the universal term inside the square brackets in Eq.
amplitude(small my,). Therefore diffractive orbits with mul-  (4.26) approximately vanishes if tHe matrix is diagonal and
tiple core scatterers will probably have a more importantm=0. We noted above that whems =u;; the nondiagonal
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T-matrix elements do vanish, but the universal terms in Eqthe Hamiltonian just incorporates the Coulomb fjeld

(4.26) are not simultaneously canceled for all the valueg. of For example, if we use polar coordinates, the initial Jaco-
This feature appears as a consequence of the approximatiob&n on the boundarys(t, 6,,) that appears in Eq$3.13
made in deriving Eq94.18 and(4.25) rather than a generic and(3.15 becomes

characteristic of multilevel scatterers.

Ja(to, i) =13 Sin Gigf (AB)
VI. CONCLUSION
where we put
In this work, we have derived the corrections to the den-
sity of states when a multilevel scatterer is added to a system 9bq = iy = (ro/2) 12 (A7)
i i r=ro
that can be treated semiclassically. We employed as a model ﬁpgiq .

a scaled Rydberg molecule in a magnetic field. The core—. i
Rydberg-electron collision results in a “diffraction” of the Since we assumg, =0 on the boundary circle. If we use
semiclassical waves, accompanied by a change in the poteAnother set of coordinatég,q*) as in Sec. Ill C 2, then
tial sheet of the outer electron. The relevant Green'’s function N
was obtained and em i irst- i - 5= Q)
ployed to derive a first-order semiclas = r.
sical expression giving the diffractive contribution to the a(r, 0)
spectral rigidity. This expression was tested by comparing
with the spectral rigidity obtained from accurate quantum
calculations, yielding a qualitative and semiquantitative
agreement. Indeed, semiclassics gives an interpretation of the To obtain the amplitude term of the diffractive DOS as
spectral statistics that cannot be obtained in any other wagiven in Eq.(3.29, it is useful to start from the Green’s
The quantitative results, while reproducing the main featureunction between points on the boundary surface
of the diffractive contributions to the rigidity, suffer from the stdk)(ro,t?ik;rf,efk). Using the coordinate system given in
shortcomings discussed above. It does appear, however, thgéc. |11 C 2 and transforming back to polar coordinates, we
these shortcomings arise from system specifiused phase hayve, using EqqA7) and(A8),
spacef not small enoughrather than hinging on the method
employed.

(A8)

APPENDIX B

1 % 1/2

iz 2t 15 *23sin 6y sin Oy | 90
We relate the propagation of the density as it appears in Xexp{i[S(r’,r) — w2 — 3ml4]}.  (B1)

Eqg. (3.13 to the prefactor in the semiclassical Green’s func-Equation(3.25) is obtained by expressing the angular deriva-
tion by directly evaluating tive in terms of the stability matrix element, 5, expressed

sto(k)(ri re) =

APPENDIX A

P P! Pl g in semiparabolic coordinatésee, e.g.[27]) as
ag= 2| 2L - S A Ay ”
s @ Mo |t ot @ My | 90k __ o (B2)
90| 2Mmyp”

for our problem at hand. The index O refers to the initial
point, which is located on the initial surfagthe boundary
circle). We assumeg; is a cyclic coordinate, and singg" APPENDIX C

=0 we obtain by manipulating partial derivatives that . ,
Whereas the spectral form factor contains information

oo | specific to geometric or diffractive orbits, the shape of the
s o =0 (A2) spectral rigidity depends on the orbit selection function
0
and G(v) = 1-F4») - 3[F' (n)], (C1)
oq- ot where F(v)= sinv/v. Following the scaling properties, we
—| = —- (A3) have
Po a5 P | :
LS ,
We now use‘aq/at|qé:q and the above equation to establish v= 2 =mlol. (C2)
It l)_l_} @ @ Ad) The orbit selection function saturates when the argument
(t,ag —q oq* | .. ape |, ( = 7. The maximum value of at which G(v) saturates is
% therefore given by
. ﬁqé ; 2my
=Dao —| - (AS5) Lhax= 5> (C3
9pg | " Shin

The last term in Eq(A5) is evaluated explicitly on the whereS,, is the scaled action of the shortest classical orbit
boundary circle(where the magnetic field is negligible and in the potential sheet corresponding to the scatterer in state
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[j>. We will drop the indexj below, but we emphasize that
since the particle in our system can be in different potential L) =

%[1 + 422 + 274 - (1 + 2m2L?)cos 27l
sheets, there are different valued gf,,. We therefore expect m

inflections in the shape of the spectral rigidity when the ac- - 27l sin 27l - 47°L3Si2nL]. (C7)
cumulation of orbits in the potential sheg} reaches the
shortest orbit. The saturation observed in the rigidity corre- APPENDIX D

sponds to the potential sheet with the shortest orbits: here the ) )
scaled action of the shortest orbit decreases with the scaled EMploying the indexD as a shorthand for the overall
energy. diffractive contributions (i.e., Ap=Ayp+App), ‘we .have.

Whereas in the scatterer-free system the rigidity involvedt (L) =40(L) +Ap(L). Each of these two terms is written in
(in the range L <L, for which the classical sum rule terms of the form factor with the help of E¢4.13. It then
form of the form factor is appropriaténtegrals of the form follows that

2my
X

L do ds
f —G(nLo), (C4) A(L)_AO(L):|:AD(0'<U*)+_J KD(U)G(V)§]
g v

St

o*

the relevant integral for the diffractive contributions to the +E. (D1)
spectral rigidity is The term between square brackets is our semiclassical

1 result (4.26). Using G(v) ~ 1 for long orbits(andL>1), £
JL) = . doG(mLo) can be formally written as
R PR AP 2.2 g:lf [K(a)+K(a)]d—S—K ’ [K(a)]d—s.
"27T4|_4y3[ 1 - 27222 + 2Ly + mL2Ay?) 7)o, 0 ool 7)o g
+ (1 + 2m2L%?)cos Ay + 2mLy sin AL ay (D2)
+4773L3y35i2L7ry]|§’,§‘1’*. (C5) But since with a suitable limiting process the Laplace

transform of the form factor yields the mean level density,
(Si stands for sine integralNote that, for large values of the fact that the mean level densities are the same in systems
L>Lpae J(L) =1 and therefore the integrdlL) defined by  with and without a scatterer indicates that 0. Note that
Eq. (4.19 asZ(L)=2mxJ(L) behaves as this is consistent with th&/15 behavior observed for small
s - L in Fig. 2, which is independent of the core properties. To
ZL> Lina) = 27X (C6) this approximation, Eq.D1) indicates that our semiclassical
For general values df, it is furthermore easy to show that in result(4.26) is identical with the differencé(L)—Ay(L) that

the semiclassical limit.s— 0, we have we calculate quantum-mechanically.
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