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A semiclassical framework to interpret the spectral rigidity of a system containing a scatterer with internal
states is developed. Our prototype system is a scaled Rydberg molecule in an external magnetic field, where the
core is a multilevel scatterer: the potential sheet in which the outer electron moves depends on the quantum
state of the core. Thus the electron-core collision, interpreted in terms of the diffraction of the semiclassical
waves associated with the outer electron on the core, can result in a change of the electron’s dynamical regime.
We examine the contribution of the diffraction to the spectral rigidity by obtaining the diffractive Green’s
function in the semiclassical limit. We concurrently determine this contribution from accurate quantum spectra
and compare numerically the semiclassical and quantum results. Our findings indicate that, in a system with a
multilevel scatterer, the diffractive contribution to the spectral rigidity cannot be accounted for by a simple
universal expression, but rather depends on system specific nonuniversal terms: the quantum properties of the
scatterer(reflected by the relative values of the phase shifts in the different channels) and the classical
properties of the shortest periodic orbits in the different dynamical regimes.

DOI: 10.1103/PhysRevE.70.046215 PACS number(s): 05.45.Mt, 03.65.Sq, 32.60.1i

I. INTRODUCTION

A fundamental property of quantum systems concerns the
statistical distributions of the energy levels. On the one hand,
it is well known that regular quantum systems are character-
ized by level clustering, whereas irregular systems display
level repulsion. On the other hand, there is ample evidence
that the spectral fluctuations of the energy levels depend on
the nature of the corresponding classical system. The main
tool employed in connecting both approaches is the semi-
classical trace formula, giving the modulations in the quan-
tum density of states in terms of classical periodic orbits.
Since for generic systems semiclassics does not resolve in-
dividual states, such methods fail for short-range statistics
(relative to the mean level spacing), such as the nearest-
neighbor distribution, but should give appropriate results for
longer-range correlations. Indeed, in a seminal work, Berry
[1] showed how long-range level correlations could be ob-
tained in terms of periodic orbits. In particular, the spectral
rigidity DsLd, linked to the two-point correlation function
(and to its Fourier transform, the spectral form factor), was
shown to depend on mean properties of the long-time clas-
sical dynamics(giving rise to universal behavior) and on the
short periodic orbits(which give rise to a system-dependent
behavior).

When a scatterer is added to the system, the potential
acquires discontinuities. In the semiclassical limit, this gives
rise to additional terms in the trace formula which have their
origin in the diffraction of the waves on the scatterer[2]. The
orbits that hit the scatterer are termed “diffractive,” as op-
posed to the “geometric” ones that exist in the scatter-free
system. Although the additional terms in the trace formula
have a higher" dependence, it is known that they can still

have an influence in the spectral statistics as"→0. For ex-
ample, Sieber has given the correction to the spectral form
factor for simple systems displaying geometry-dependent
diffraction [3]; it was also shown that, by including correla-
tions between diffractive and geometric orbits, the form fac-
tor of a system with a pointlike scatterer was left unchanged
in the chaotic regime[4,5]; more recently, the effect of lo-
calized perturbations in billiards was investigated[6,7].

In this work, we investigate the spectral rigidity for a
system presenting a multilevel quantum scatterer. This means
the scatterer behaves as a quantum object(as opposed to the
geometry-dependent scattering case considered up to now)
which may exchange energy with the semiclassical waves.
Our prototype system studied here will be a Rydberg mol-
ecule in an external field; the excited electron will be treated
semiclassically when it roams far from the residual molecu-
lar core, but the scattering process between the core and the
electron is treated quantum mechanically. The main feature
is that scattering may lead to a change in the internal quan-
tum state of the core, in which case the outer electron moves
in different potential sheets prior to and after the collision.
Although long-range correlations for the hydrogen atom in a
magnetic field were studied quite early[8], very little has
been done for nonhydrogenic atoms: numerical results for
lithium were presented in Ref.[9] along with a phenomeno-
logical formula to take into account the diffractive effects.
Fluctuation properties for Rydberg molecules in field-free
space were studied by Lombardi and Seligman[10]; how-
ever, scattering was not treated as a diffractive process but by
means of a classical model that turns out to be valid only for
very high rotational quantum numbers.

We will determine below the diffractive contribution to
the spectral rigidity, by undertaking exact quantum calcula-
tions on the one hand and by deriving the semiclassical for-
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malism which takes the diffractive orbits appropriately into
account. In Sec. II a brief presentation of the model is given.
In Sec. III the diffractive Green’s function is constructed
with the aim of obtaining the additional terms entering the
trace formula. This allows us to determine the diffractive
contribution to the spectral rigidity(Sec. IV) by employing a
semiclassical approach. Our formulas account both for non-
universal terms(due to individual short-period orbits) and
universal terms(generated by longer orbits). We then com-
pare in Sec. V the rigidity obtained from the quantum calcu-
lation of the energy levels to the predictions of the semiclas-
sical model; by changing the properties(quantum phase
shifts) of the scatterer we contrast various situations. We ex-
amine in particular the effects of elastic and inelastic colli-
sions on the energy level correlations. We then discuss the
results and the relevance of the approximations made, and
conclude.

II. DESCRIPTION OF THE MODEL

A. Scaled electron dynamics in a Coulomb and magnetic field

The hydrogen atom in an external magnetic field is a well-
known paradigm of quantum chaos[11]. The classical dy-
namics of the electron does not depend independently on its
energyE and the magnetic field strengthg but is invariant
(up to a scale factor) providede=Eg−2/3 is constant.e is the
scaled energy and the dynamics goes from the near-
integrablese&−0.8d to the chaoticse&−0.1d regime. Using
scaled variablessr̃ =g2/3r , p̃=g−1/3pd in the Schrödinger
equation leads to a generalized eigenvalue problem where"
is replaced byg1/3;"ef f, which plays the role of an effective
Planck constant. Therefore, the scaling property allows us to
study the semiclassical limit of the quantum problem while
keeping the classical dynamics constant.

This scaling property still holds for simple nonhydrogenic
Rydberg atoms(e.g., [12]). The outer electron senses only
the Coulomb and magnetic fields(exactly as in hydrogen)
except in a small zone around the core(the inner region). But
to a good approximation the core–Rydberg-electron interac-
tion is energy independent, so that in practice the scaling
properties hold.

B. The model: A scaled molecule

However, for generic atoms and even for the simplest
diatomic molecule, the outer electron may exchange energy
with the core, and the quantum state of the core may also
change. Therefore, in the outer zone the Rydberg electron
senses only the Coulomb and magnetic fields, but following
the collision with the core the energy will change if the en-
ergy partition between the outer electron and the core is
modified. In the scaled problem, this involves a change in the
scaled energye of the electron; the collision therefore modi-
fies the dynamical regime. However, the core–Rydberg-
electron interaction in the inner zone cannot be scaled, since
this interaction depends on physical properties of the core
that are independent of the outer electron’s energy or the
magnetic field strength.

The model employed in this work to investigate the spec-
tral statistics is that of a scaled diatomic molecule. This
model was described in detail in Refs.[13,14], in which we
studied the photoabsorption spectrum(the density of states
weighted by dipole transition elements) for a molecule such
as H2; we compared the quantum results with a semiclassical
formalism based on closed orbit theory. Here we will use the
same quantum code to obtain the levels for the scaled mol-
ecule in a magnetic field.

In our scaled molecule model, the molecule is partitioned
into an outer electron and the residual ionic core. The core
can be in one of four quantum states: the ground state has the
quantum numbersN=0, MN=M; physically, N is the rota-
tional quantum number of the core,MN is the projection ofN
on the field axis, andM is the projection of the total angular
momentumJ of the molecule on the field axis. There are
three excited core states; they have the same rotational num-
berN=2, but different projectionsMN=M −1, M, M +1. The
three excited states are degenerate in energy(which physi-
cally amounts to neglecting the linear Zeeman effect). M is
the only conserved quantum number(in what follows we
will set M =0). The energy partition leads to the following
relationship between the scaled energieseN of the outer elec-
tron associated with different core statesN:

eN=0 = eN=2 + 2s2 + 1dB̃r . s2.1d

B̃r is the scaled rotational constant, which is obtained by
artificially scaling the real molecular rotational constant(see

Sec. III F of [14]). In the present work,B̃r may be seen as a
parameter that sets the scaled energy gap between the two
dynamical regimes. Note that forN=2 the dynamical regime
for the outer electron does not depend on the value ofMN,
but the potential sheet in which the electron moves does
depend on whetherMN=0 or uMNu=1.

C. The T matrix

We briefly describe the scattering process between the
outer electron and the core. Far from the core, the electron is
affected by the core in one of its alternative core statesu jl
;uNjMNj

l and senses only(in addition to the external mag-
netic field) the long-range Coulomb field due to the positive
ionic core; the orbital momentum of the outer electronl is
coupled to the magnetic field axis, andm is its projection(we
have M =MNj

+mj). However, in the comparatively very
small region near the core, the external field is negligible and
the electron is strongly coupled to the molecular core: the
global molecule is then described in the Born-Oppenheimer
frame ual;uLaJalal. L is the projection of the electronic
angular momentum on the molecular axis, on whichl is now
quantized. The descriptions in the two regions are linked by
a unitary frame transformation, with elementsk j ualM that are
easily determined[15]. The upshot is that the short-range
interaction between the core and the outer electron is best
described in theual basis, where theT matrix is diagonal,
with elements
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Ta =
1 − e2ipma

2i
. s2.2d

pma is the phase shift induced by the short-range interaction
of the core when the outer electron is described in theual
basis.

The T matrix, which gives the transition probabilities be-
tween states of the outer region, described in theu jl basis,
contains the scattering information that will be of interest for
the diffraction process. It is obtained from theT matrix by
implementing the frame transformation(e.g.,[14])

Tjj 8 = o
a

k j ualTakau j8l, s2.3d

where we have dropped theM dependence on the frame
transformation and on the resultingT matrix. Thus theT
matrix depends on the electronic quantum defectsma, which
give the phase shifts induced by the short-range core-electron
interaction in theual basis. In our model, we assume there
are only two independent quantum defects:mS for the state
uL=0,J=1,l =1l and mP for the stateszuLu=1,J=1,l =1‹.
From the physical standpoint, this corresponds to investigat-
ing the statistics of states excited from the ground stateuL
=0,J=0,l =0l of the molecule, assuming that the outer elec-
tron does not penetrate into the core whenl ù2.

To sum up, the characteristics of the diffractive scatterer
depend on the two quantitiesmS andmP, which in turn de-
termine theT-matrix elements between statesu jl and u j8l
where u jl and u j8l stand for the four core statesuN=0,MN
=0l, uN=2,MN=0l, uN=2,MN= ±1l.

III. THE DIFFRACTIVE GREEN’S FUNCTION

A. General remarks

The geometrical theory of diffraction for electromagnetic
waves in the short-wavelength limit is well established[16].
The use of analogous techniques in semiclassical physics is
more recent(e.g., [2,17,18]). The aim is to extend periodic
orbit theory in the cases where the semiclassical waves, car-
ried by classical trajectories, encounter discontinuities of the
order of their de Broglie wavelengths. This diffractive pro-
cess is incorporated into periodic orbit theory by determining
the diffractive part of the Green’s function. Indeed, in the
absence of the diffractive scatterer, quantum properties of the
system are obtained from the(scatterer-)“free” Green’s func-
tion G0sEd in terms of the periodic orbits of the “free” sys-
tem, which are usually termed geometric periodic orbits.
When the scatterer is added, the total Green’s function is

GsEd = G0sEd + GDsEd, s3.1d

whereGD is the diffractive Green’s function to be obtained
in terms of the periodic orbits(PO’s) that hit the scatterer.
These “diffractive PO’s” produce additional fluctuations in
the energy spectrum.

In the present section we will determine the diffractive
Green’s function for our system—a scaled molecule for
which the scatterer(the molecular core) presents many inter-
nal states. In the limit in which the scatterer has only one

quantum state, this gives the diffractive Green’s function for
simple nonhydrogenic atoms, which have been intensively
investigated and for which a phenomenological global dif-
fractive contribution was obtained[19]. Our approach will
heavily rely on known results obtained from closed orbit
theory [20], a version of PO theory that has been employed
to investigate the photoabsorption spectrum of Rydberg at-
oms and molecules in external fields. However, unlike
Gutzwiller’s approach[21], which is based on a semiclassi-
cal approximation to the propagator written in terms of a
path integral, closed orbit theory relies on the semiclassical
approach due to Maslov[22], grounded on a semiclassical
approximation to the transport and phase equations. In what
follows, we will use a straightforward identification between
both approaches; an elegant and rigorous treatment connect-
ing both approaches was given by Littlejohn[23].

B. Determination of the diffractive Green’s function

1. Two-dimensional semiclassical “free” Green’s function

In the outer region, the excited electron is subjected to the
Coulomb and magnetic fields, yielding a three-dimensional
axially symmetric system; the axis of symmetry is along the
z axis, chosen in the direction of the magnetic field. We can
therefore separate the azimuthal degree of freedom(with
quantum numberm, the projection ofl on the z axis, and
azimuthal anglew) and write the “free” Green’s function in
the semiclassical limit as

G0sEd = o
m

umlkmuGsc
smdsr 8,r ,Ed, s3.2d

where Gsc
smd is the symmetry reduced semiclassical Green’s

function corresponding to the azimuthal numberm [since the
effective two-dimensional(2D) potential depends onm]. It is
straightforward to show[24] that Gsc

smd is the usual two-
dimensional semiclassical Green’s function describing
propagation fromr to r 8, which are two points in the 2D
axial plane.Gsc is given by[25]

Gscsr 8,r ,Ed = o
k

s"Î2p"d−1uDku1/2

3expifSksr 8,r d − mkp/2 − 3p/4g. s3.3d

Sk and mk are the action and the Maslov index for thekth
trajectory connectingr and r 8. Dk is the Jacobian determi-
nant giving the density of paths; in a local coordinate system
r =sq,q'd, whereqsq'd lies along(perpendicular to) the tra-
jectory andpsp'd is the conjugate momentum, we have

Dk =
1

q̇q̇8
S ]pk8

'

]q' D
q8'

. s3.4d

Equation(3.2) gives the Green’s function for the hydro-
gen atom in a magnetic field. Anticipating the multiple-core-
state case, we can write the Green’s function for a set of
hydrogen atoms at different energiesEj as
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G0sEd = o
j

u jmjlk jmjuGsc
j sr 8,r ,Ejd. s3.5d

With u jl= uNjMNj
l andE=Ej

++Ej, Eq. (3.5) gives the Green’s
function for a sum of independent systems each comprised of
an outer electron at energyEj associated with a molecular
core at energyEj

+ which interacts with its outer electron only
through the long-range Coulomb field. This is the “free”
Green’s function in the outer region for our model.

2. Green’s function in the inner region

In the inner region, near the core, the external magnetic
field can be neglected and the system displays the spherical
symmetry of the Coulomb field with coordinatesr =sr ,ud
(the anisotropy created by the core-electron interaction is
embodied in the quantum defects, which appear as radial
phase shifts). The quantum mechanical “free” Green’s func-
tion takes into account only the Coulomb interaction:

G0sr2,r1,Ed = − 16po
j

u jmjl

3k jmjuf l j
sr1dYl jmj

* su1dgl j
+sr2dYl jmj8

su2d,

s3.6d

wherer2. r1 andYl jmj
suid stands for the spherical harmonic

Yl jmj
sui ,0d. f l and gl are standing Coulomb waves, respec-

tively regular and irregular at the origin, andgl
±=sgl ± i f ld are

outgoing and incoming Coulomb waves.
If we now take into account the short-range interactions,

the total Green’s function is given in the inner zone by pro-
jecting the resolvent equationG=G0+G0TG0, yielding [26]

Gsr2,r1d = − 16po
j

u jmjlgl j
+sr2dYl jmj

su2dHo
j8

fd j j 8f l j8
sr1d

+ Tjj 8gl j8

+ sr1dgYl j8mj8

* su1dk j8mj8uJ . s3.7d

Note that the labelmj in u jmjl is redundant, sinceM =Mj
+mj is fixed; we shall therefore subsumemj under the labelj .
Of course, Eqs.(3.6) and(3.7) can also be written in theual
basis. A solutionuc jl of the full Hamiltonian in the inner
zone is related to a standing-wave solutionuj jl
= f l j

srdYl jmj
sudu jl of the scatterer-free Hamiltonian via the

Lippman-Schwinger equation

uc jl = uj jl + G0Tuj jl. s3.8d

3. Connecting the inner and outer zones

Equations(3.5) and (3.7) cannot be connected directly,
since the relevant Green’s functions obey different boundary
conditions. We will rely instead on closed orbit theory tech-
niques and consider the following physical situation(Fig. 1).
Let the core be in statej andr 1 andr 2 two points in the outer
region. We want to find the waves arriving atr 2 produced by
a unit source placed atr 1. Semiclassically, there are three
types of waves carried by three different types of trajectories.
The direct propagation fromr 1 to r 2, obviously without af-

fecting the state of the scatterer[dotted line in Fig. 1(a)] is
due to the “free” Green’s function; this is the standard situ-
ation which will not concern us in this paper. Theelastic
diffractive trajectory[solid line in Fig. 1(a)] links r 1 to r 2
via a hit at the core, without changing the state of the core.
The trajectory arrives near the scatterer at some pointr f
=sr0,u fd and leaves the core region passing throughr i

=sr0,uid [see Fig. 1(c)]. r0 is the radius of a boundary circle
within the inner region but for which the approximations
made in the outer region still hold[14,20]. The third type of
trajectory is theinelasticdiffractive one[Figs. 1(a) and 1(b)]:
the electron arrives on the core in statej [Fig. 1(a)] but
leaves the inner region with the core in statej8 [Fig. 1(b)].
Usually inelastic scattering is accompanied by a change in
the potential sheet in which the electron moves.

To find the Green’s function in the inner zone, we proceed
as in closed orbit theory(e.g., Sec. III D of[14]), except that
here the initial wave is a unit source placed atr 1. On the
boundary circle, the incoming wave isGsc

j sr f ,r 1,Ejdu jl with
Gsc given by Eq.(3.3). On the other hand, in the inner region
the most general solution is given by the sumo j8cj8uc j8l
where theuc j8l’s are given by Eq.(3.8); the expansion yields

o
j8

u j8lYl j8mj8
sudo

j

cjfd j j 8f l j8
srd + Tjj 8gl j8

+ srdg. s3.9d

The coefficientscj are now determined by matching the in-
coming part of this expression to the incoming semiclassical
wave function. This match is done in the stationary phase
approximation(for each incoming trajectoryk, the integral

FIG. 1. (a) shows the potential sheet associated with the core
scatterer in stateu jl and (b) shows another potential sheet lying
lower in energy associated with the scatterer in stateu j8l. A unit
source placed atr 1 reachesr 2 either by direct propagation[dashed
line in (a)], by hitting the core while staying on the same potential
sheet[solid line in (a), elastic scattering], or by changing to another
potential sheet after the collision with the core[solid line fromr 1 to
the core in(a) and from the core tor 2 in (b), inelastic scattering].
(c) shows schematically the matching between the semiclassical
waves outside the boundary circle and the quantum mechanical
wave function in the inner zone(see text).
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on u f is performed along the angle of stationary phaseu fk).
This gives

cj = "1/2e−l jpe−ip/229/2p2r0
1/2eiÎ8r0

3o
k

sinu fk
Yl jmj

* su f8kdGscskd
j sr0,u fk;r 1,Ejd, s3.10d

where we have denoted byGscskd
j the kth term of the sum

over the trajectories[i.e., the expression to the right of the
sum symbol in Eq.(3.3)].

The outgoing wave(from the region near the core toward
r 2) is given by the core-scattered part of Eq.(3.9),

coutsr d = o
j8

u j8lYl j8mj8
sudo

j

cjTjj 8gl j8

+ srd. s3.11d

Beyond the boundary circler i =sr0,uid, this outgoing wave is
propagated semiclassically. Applying Maslov’s theory, we
write the wave function in shorthand notation as

coutsr d = o
j8

u j8lo
q

Îrq
j8sr d expisSq

j8 − mq
j8p/2 − 3p/4d,

s3.12d

where the solution of the transport equation for the densityr
gives [22]

rq
j8sr d =

J3st0,uiqd
J3st,uiqd

r0
j8suiqd. s3.13d

sr0
j8d1/2 is the wave function on the boundary circle(with the

core in stateu j8l). J3 is a three-dimensional Jacobian, given
by J3st ,uiqd=r2 sinuJst ,uiqd, whereJst ,uiqd is the standard
Jacobian in the 2D plane:

Jst,uiqd = detU ]sr,ud
]st,uiqd

U . s3.14d

Equations(3.13) and(3.14) describe the divergence of neigh-
boring trajectories starting on the boundary circle at timet0
and arriving atr at time t, and are thus akin to the determi-
nant appearing in the semiclassical Green’s function(see Ap-
pendix A).

Using the asymptotic expansion forgl j
+sr0d in the zero-

energy approximation as in[14], we have

fJ3st0,uiqdr0
j8sr0dg1/2 = eiÎ8r0o

j

Zqk
j8 jGscskd

j sr0,u fk;r 1,Ejd

s3.15d

with

Zqk
j8 j = o

l j8

"1/2r0
1/223p3/2e−isl j+l j8dp

3ÎsinuiqYl j8mj8
suiqdsinu fkYl jmj

* su fkdTjj 8,

s3.16d

where we have used Eq.(3.10). We finally use Eq.(A5) and
put the outgoing wave(3.11) at r 2 as

coutsr 2d = "Î2p"o
j8

u j8lo
q,k

Zqk
j8 je2iÎ8r0Î2r0 sinuiqGscsqd

j8

3sr 2,r0,uiq;Ej8dGscskd
j sr0,u fk;r 1,Ejd. s3.17d

4. Diffraction coefficient

The content of Eq.(3.17) is the following. A unit source is
placed atr 1 with the core being in stateu jl. These waves are
carried by classical trajectories; some of these trajectories,
labeledk, hit the core with an angleu fk. Those trajectories
are continued in the region near the core by the quantum
mechanical scattering process, which results in outgoing
waves, propagating semiclassically along trajectoriesq, with
the core now being in a stateu j8l. coutsr 2d gives the wave
function atr 2 resulting from the superposition of the possible
statesu j8l populated after the collision. The Green’s function
GD corresponding to this diffractive process is given by sum-
ming Eq.(3.17) over the possible quantum states of the scat-
terer,

GDsr 2,r 1;Ed = o
j ,j8

o
q,k

Gscsqd
j8 sr 2,0;Ej8d

3u j8lCqk
j8 jk j uGscskd

j s0,r 1;Ejd, s3.18d

where of course energy conservation requires thatE=Ej

+Ej
+=Ej8+Ej8

+ . We have denoted by

Cqk
j8 j ; "Î2p"Zqk

j8 jÎ2r0 sinuiq s3.19d

the diffraction coefficient. C depends on the angles of the
incoming and outgoing trajectories and on the quantum
states of the core that determine the value of theT-matrix
elementTj8 j. We have used the fact that ifq is in the outer
regionSs0;qd.Î8r0+Ssr0,u ;qd [14,27] to absorb the coef-
ficient e2iÎ8r0 in the Green’s function, which now formally
propagates from the origin atr =0. Note that the diffraction
coefficient also depends onr0, which gives the internal scale
of the inner zone diffraction. However, as is known from
closed orbit theory for the photoabsorption cross section, we
show below that the density of states does not depend onr0.
Finally, it may also be noted thatGD is of orderÎ" relative to
the “free” Green’s function.

C. Diffractive density of states

1. Density of states

The fluctuation in the density of states(DOS)—formally
proportional to ImfTrGg—is obtained in the semiclassical
limit by taking the trace ofGsc as [25]

d0sEd =
1

2p"
o
k

Ak expiSk + c.c. s3.20d

with

Ak =
tk exp −ismk + skdp/2

udetsMskd − Idu1/2 , s3.21d

and where c.c. stands for complex conjugate and will be
implicitly understood in the rest of the paper. We have as-
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sumed the orbits are isolated;k runs on the periodic orbits
and their repetitions andsk is an additional phase resulting
from taking the trace.tk is the period andM the 232 sta-
bility matrix of the orbit with elementsmnp. When diffractive
effects are present, the total Green’s function is given by the
sumG=G0+GD; the geometric DOS is given by ImfTrG0g,
yielding Eq. (3.20), whereas the diffractive contribution to
the DOS is obtained by taking the trace ofGD.

2. Taking the trace of GD

To take the trace of Eq.(3.18), we first use the orthonor-
mality of the statesu jl and reduce the problem to two dimen-
sions[24]. We can then setj = j8 andk=q, yielding

TrGD = o
j

o
k

Ckk
j j E dqdq'Gscskd

j sr ;0dGscskd
j s0;r d

s3.22d

wheresq,q'd are local coordinates along and perpendicular
to the trajectory introduced in Sec. III B 1. Given the reduc-
tion from 3D to 2D, we choose for conveniencesq,q'd so
that relative to the cylindrical coordinatessr ,zd the Jacobian
is ]sr ,zd /]sq,q'd=sr sinud−1. The integral can now be per-
formed, for each trajectoryk, in the stationary phase approxi-
mation(a similar calculation is given in full detail by Bruus
and Whelan[18]). To first order in", we obtain the approxi-
mate folding property for the semiclassical Green’s function:

TrGD = o
j

o
k

Ckk
j j tk

j Gscskd
j s0;0dsi"d−1. s3.23d

The diffractive DOS is thus given in terms of the geometric
(“free” hydrogenic) orbits k closed at the nucleus associated
with every possible quantum stateu jl of the scatterer,
weighted by the diffraction coefficientCkk

jj . As in closed orbit
theory, the classical orbitsk that hit the center of the core
sr =0d are radial in the vicinity of the core: they leave the
boundary circle with an initial angleuik and return with a
final angleu fk.

Equation(3.23) can be written(see Appendix B) in a form
similar to the geometric DOS(3.20):

dDsEd =
1

2p"
o

j
o
k

Ak
j expiSk

j s3.24d

with

Ak
j = "1/2e−ismk

j p/2+3p/4dTjjYl jmj

3suikdYl jmj

* su fkdtk
j 25/2p3/2U sinuik sinu fk

m12skd
U1/2

;

s3.25d

m12 is an element of the stability matrix for thekth orbit,
calculated by considering a deviation in momentum space
perpendicular to the orbital motion. It may be noted that the
diffractive contribution to the DOS is"1/2 suppressed relative
to the geometric DOS and that it does not depend onr0. As
expected,dDsEd depends on the quantum properties of the
scatterer(via theT matrix) and on the properties of the clas-

sical orbits of the scatterer-“free” system. This is a general
characteristic that is found in other works based on the geo-
metrical theory of diffraction. For completeness we point out
that the formulas given above between Eqs.(3.10) and(3.25)
need to be modified whenk is the so-called parallel orbit
suik=u fk=0d [14,29]

IV. DIFFRACTIVE CONTRIBUTION TO THE SPECTRAL
RIGIDITY

A. The spectral rigidity D„L…

1. D„L… in terms of periodic orbits

The spectral rigidityDsLd is defined as the least-squares
deviation of the staircase function from the best-fitting
straight line over an energy range corresponding toL mean
level spacings[28],

DsLd ; Kmin
A,B

kdl
L
E

«0−L/2kdl

«0+L/2kdl

d«fNs«d − A« − Bg2L ,

s4.1d

wherekdl is the mean density and the outer angular bracket
denotes an average over the starting points«0. NsEd is the
spectral staircase function,

NsEd =EE

d«ds«d. s4.2d

DsLd describes correlations between level sequences longer
than the mean level spacingkdl−1, i.e., L.1. Berry [1,30]
showed that, provided the energy rangeL / kdl is classically
small(though it may be semiclassically large), DsLd could be
obtained in terms of periodic orbits as

DsLd =
1

2p2E
0

` dn

n

Ksn/pLd
n/pL

Gsnd, s4.3d

wheren=Lt / s2"kdld. The “orbit selection” functionGsnd is
given in Appendix C.Kszd is the spectral form factor, defined
as the Fourier transform of the two-point correlation function
(with z=t /hkdl). In the semiclassical limit,Kszd is approxi-
mately given by[30]

Kszd .
1

2p"kdlKo
k,q

AkAq
* expfisSk − Sqd/"gdSt −

tk + tq

2
DL ,

s4.4d

with the factorsAk given in Eq.(3.21).
Different approximations forKszd have been discussed in

[30]. They are appropriate for different values ofz. Let z* be
such thattmin/hkdl!z* !1 wheretmin is the period of the
shortest orbit. Then
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Kszd <
1

hkdlok

uAku2dst − tkd, z , z * , s4.5d

Kszd < z, z * , z , 1, s4.6d

Kszd < 1, z . 1. s4.7d

Equation(4.5) is the diagonal approximation, which is valid
for short periodic orbits and gives rise to nonuniversal(i.e.,
system-dependent) terms; in particular, the shortest orbit de-
termines the spacingLmax for which the rigidity saturates
(see Appendix C). Equation(4.6) is valid for long (but not
too long) orbits and follows from a classical sum rule[31] in
the diagonal approximation, which leaves no trace of any
system-dependent dynamics; from Eq.(4.3), this form essen-
tially contributes to the rigidity in the interval 1!L!Lmax.
The form(4.7) is valid for long orbits beyond the Heisenberg
time and is obtained by appealing to a semiclassical sum rule
[1]; it contributes toDsLd for small values ofL, but also
contributes to rigidity through an additive constant term.

2. Geometric and diffractive contributions

Since the total fluctuations in the spectral DOS are given
by dsEd=d0sEd+dDsEd, the same relation holds for the oscil-
lating part of the spectral staircase function. It then follows
from Eq.(4.1) that the spectral rigidity is obtained as the sum
of three terms:

DsLd = D00sLd + D0DsLd + DDDsLd. s4.8d

D00sLd is the rigidity for the “free” system: it involves only
correlations between orbits of the free system, so that for
K00szd the indicesk and q in Eq. (4.4) refer to geometric
periodic orbits.D0DsLd involves correlations between geo-
metric and diffractive orbits so that in the spectral form fac-
tor k and q refer, respectively, to geometric and diffractive
orbits. In the same vein,DDDsLd involves only correlations
between diffractive orbits. In this work, we are interested
only in the contributionDdif fsLd to the spectral rigidity pro-
voked by the presence of the scatterer, which is the same as
the difference between the spectral rigidity for the system
and the rigidity for the scatterer-free system, since

Ddif fsLd ; DsL;Td − D00sLd = D0DsLd + DDDsLd; s4.9d

we have explicitly writtenDsL ;Td;DsLd to emphasize the
the scatterer dependence through theT matrix.

B. Diffractive spectral rigidity for the scaled molecule

We now determineDdif fsLd for our model described in
Secs. II and III. We first need the scaled equivalent of the
formulas given above. We then use the following approxima-
tions. ForDDDsLd we employ the diagonal approximation for
diffractive orbits. We obtain a classical sum in the isotropic
approximation by relying on previous results obtained by
Sieber[3]. For D0DsLd, we restrict the correlations to orbits
having the same action and the same topology; this has the
effect of taking into account the sole closed orbits at the

origin, but the amplitude factors enteringK0Dszd are differ-
ent; we use a classical sum rule for off-diagonal contribu-
tions, adapted from the one that was obtained by Bogomolny
et al. [4]. However, we cannot obtain a semiclassical sum
rule without taking into account the correlation between geo-
metric orbits that do not hit the origin and that make up
D00sLd. Here, we restrict our attention toDdif fsLd and we will
not therefore search for a semiclassical sum rule; as a result,
the determination ofD0DsLd and DDDsLd will hold only for
L@1. The constant term arising from the semiclassical sum
rule is of no importance: in Sec V we compare the difference
DsL ;Td−D00sLd obtained from quantum mechanically calcu-
lated energy levels for systems with and without the scat-
terer. As argued in Sec. V A and Appendix D, the constant
term can be taken to be the same in both systems, and there-
fore vanishes when the difference is taken.

1. Rigidity in scaled variables

The advantage of scaling the system is that the classical
dynamics is invariant provided the scaled energye is fixed;

the scaled amplitudes and actionsÃsed and S̃sed are then
constant and the levels are obtained as a function of the
parameterk;g−1/3. k is varied in the intervalfk1,k2g andk̄

is the midpoint. The scaled action, defined bykS̃sed
;SsEd /", plays the role of both the actionS and the period
t of the unscaled orbit, andk plays the role of the energy and
of "; in the following, the notation"ef f stands for the mean
value"ef f= k̄−1 of k−1 in the intervalfk1,k2g.

The oscillating part of the scaled DOS(at fixede) is

d̃skd =
1

2p
o

j
o
k

Ãk
j expikS̃k

j + Ãk
j expikS̃k

j s4.10d

with [cf. Eqs.(3.23) and (3.25)]

Ãk =
S̃k exp −ismk + skdp/2

udetsM̃skd − Idu1/2
s4.11d

and

Ãk
j = "ef f

1/2S̃k
j e−ismk

j p/2+3p/4dTjjYl jmj
suikdYl jmj

*

3su fkd25/2p3/2U sinuik sinu fk

m̃12skd
j U1/2

. s4.12d

It is straightforward to obtain the rigidity by following the
original derivation leading from Eq.(4.1) to Eq. (4.3) [1]
(actually, the derivation is simpler for scaled systems). Since

the scaled spectra will be unfolded, we putkd̃l=1, and keep
in mind thatL scales askdl previous to unfolding; the rigid-
ity (4.3) is obtained by summing terms of the form

DXY =
1

2p2E
0

` dn

n

KXYsn/pLd
n/pL

Gsnd s4.13d

with
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n =
LS

2x
, s4.14d

where x;]kNl /]k. We will from now on omit the tildes
from the scaled variables, as no confusion can arise. The
indexXY obviously refers toX,Y=0 orD [cf. Eq.(4.8)]. The
spectral form factor is now given by

KXYssd .
1

2pxKo
j ,j8

o
k,q

hAXk
j fAYq

j8 g * expfisSk
j − Sq

j8dk0gjd

3SS−
Sk

j + Sq
j8

2
DL , s4.15d

whereAXk
j stands forAk

j if X=0 andAk
j if X=D; now we

haves=S/2px. Here the angular brackets denote an average
over the starting pointsk0.

2. Determination ofDDD

Strictly, the diagonal approximation would involve ne-

glecting correlations wheneverSk
j ÞSq

j8. We use the further
approximation of neglecting correlations ifj Þ j8: orbits be-
longing to different potential sheets are not correlated. For
the small values ofS that contribute to the nonuniversal part,
this approximation holds except if accidentally two orbits
belonging to different potential sheets have the same action.
For larger actions, this approximation appears necessary if
classical sum rules are to be used at all.

For short orbits(s,s* with s* !1) the diagonal ap-
proximation simply gives terms of the form

o
j

o
kPhsk,s* j

1

2p2UAk
j se jd

Sk
j se jd

U2

GSLSk
j se jd
2x

D . s4.16d

For longer orbits, the classical sum rule needs to be evalu-
ated independently for each quantum stateu jl of the scatterer
(since for eachu jl we have an independent classical problem
of an outer electron with scaled energye j moving in the
given diamagnetic potential sheet). We further assume an

average initial and final angleū=p /4. We now use the sum
rule for transient orbits given in[3]; since the initial and final
velocities are given byṙ =Î2/r (in the inner zone), we have
for eachu jl

o
k
U 1

m12skd
j UdsS− Sk

j d <
2p

S jse jd
, s4.17d

whereo jse jd is the volume of the energy surface in the scaled
phase space with scaled energye j, which can be determined
classically. The form factor then becomes

KDD
j ss . s * d <

1

2px
"ef f2

5p4o
j

1

S j uTjj u2uYl jmj
sūdu4S2.

s4.18d

The rigidity DDD is finally obtained by integrating the re-
maining term in Eq.(4.13),

IsLd ; 2pxE
s*

1

dsGspLsd, s4.19d

which is given in the semiclassical limit by Eq.(C7).

3. Determination ofD0D

The short-orbit contribution toD0D is similar to the short-
orbit contribution toDDD: as above we neglect correlations if
j Þ j8 and, although the amplitudes of the geometric and dif-
fractive orbits are different, the sum runs on the same orbits
closed at the origin: we neglect correlations between diffrac-
tive orbits and geometric ones that are not closed at the ori-
gin. Hence, fors,s*, we have

o
j

o
kPhsk,s* j

1

2p2

1

fSk
j se jdg2Ak

j se jdfAk
j se jdg * GSLSk

j se jd
2x

D .

s4.20d

For longer orbits, we need the relevant classical sum rule.
Starting from Eq.(4.15), with X=0, Y=D, and j = j8, we
assume thatK0D has significant contributions from orbits
with close actions, so that

Sk
j − Sq

j < −
1

2
Wsu,uidu2, s4.21d

where W is the matrix of mixed second derivatives of
Ssr ,r 8d. We also express the stability matrix element
1/m12skd

j taken on the boundary circle as

um12skd
j u−1/2 = U ]2Sk

j

]ui]u f
U1/2Î 2

r0
s4.22d

and further remark that

udetsMskd
j − Idu1/2Udet

]2Sk
j

]u]u8
U1/2

= udetWsu,u8du1/2.

s4.23d

We can now use the generalized sum rule obtained in[4],

o
k

dsS− Sk
j dV jsqk,pkd

udetsMskd
j − Idu

=
1

S j E dq'dp'V jsq,pd,

s4.24d

in which the DOS amplitude is multiplied by a “test func-
tion” V jsqk,pkd defined on a surface of section that includes
the scatterer and is orthogonal to the incoming trajectory.
The obvious choice forV is to take the terms between braces
in the sum (4.15) multiplied by udetsMskd

j − Idu. Note that,
since we have assumed that the trajectories are radial when
they cross the boundary circle, the integration measure trans-
verse to the motion of the orbit is reduced to
sinuÎr0/ s4+4 cosuddu. K0D is then obtained by summing
over the quantum statesj the right-hand side of Eq.(4.24).
We use again the average angle approximationū=p /4, and
Eqs. (4.21) and (4.23) then lead to a Gaussian integral.
Hence
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K0D
j ss . s * d <

− 1

2px
"ef f

29/2p3

2Î2 +Î2
o

j

1

S j isTjj − Tjj
* d

3uYl jmj
sūdu2S2. s4.25d

Note that we took the average valuek̄;"ef f
−1 for the starting

points k0, so that the Gaussian integration brings about a
factor −"ef f

1/2 which multiplies the original factor"ef f
1/2 in Eq.

(4.20). The rigidity is obtained by performing the integral
(4.19).

C. Results

We now summarize the theoretical results for the diffrac-
tive spectral rigidity obtained in the semiclassical limit. Col-
lecting Eqs.(4.16), (4.18), (4.20), and(4.25) along with Eq.
(4.13), we obtain

DDDsLd + D0DsLd = o
j
H o

kPhsk,s* j

1

fpSk
j g2sRefAk

jAk
j g

+ uAk
j u2dGSLSk

j

2x
DJ + o

j

F"ef fuYl jmj
sūdu2

p2S j

3S25p4uTjj u2uYl jmj
sūdu2

+
211/2p3

3.7
Im TjjDIsLdG , s4.26d

where IsLd is given by Eq.(4.19). The term between the
curly brackets represents a system-dependent nonuniversal
contribution, which contains the shortest periodic orbits
within each potential sheetu jl (from the shortest scaled ac-
tion Smin

j up to some scaled actionSj* !2px). This term
depends on the scatterer properties through the diffractive
amplitude Ak

j . The term between square brackets gives a
contribution coming from averaging over orbits with scaled
action Sj @Smin

j but shorter than the break time 2px. It is
universal in the sense that it does not depend on the indi-
vidual properties of the orbit, although since this is a diffrac-
tive contribution it obviously depends on the scatterer prop-
erties embodied in theT matrix. It may be noted that the
nonuniversal term depends on"ef f (throughAk

j ), whereas the
term between square brackets is independent of"ef f: indeed
IsLd,x [Eqs. (C6) and (C7)], andx scales as"ef f

−1, so that
when"ef f is varied"ef fx is constant.

V. NUMERICAL RESULTS

A. Comparing quantum and semiclassical results

We give in this section numerical results obtained for our
model by comparing the spectral rigidity obtained from a
calculation of exact quantum eigenvalues to our semiclassi-
cal approximation as given by Eq.(4.26). More specifically,
as stated in Sec. IV A 2, we are interested only in thediffrac-
tive contribution to the spectral rigidity. Quantum mechani-
cally, this involves performing calculations for the scatterer-
free system on the one hand[we obtain the rigidityD00sLd;

cf. Eq. (4.8)], and for the system with the scatterer on the
other hand[we then obtain the rigidityDsL ;Td;DsLd; cf.
Eq. (4.9)]. The quantum mechanical determination of the dif-
fractive contribution to the spectral rigidity is therefore given
by calculating the differenceDsL ;Td−D00sLd. Following Eq.
(4.9), this difference should be equal in the semiclassical
limit to the sumD0DsLd+DDDsLd. However, as mentioned in
Sec. IV A, the semiclassical expression for the rigidity in-
volves the contributions of orbits with periods beyond the
Heisenberg time, which are taken into account through the
relevant expression of the form factor obtained from a semi-
classical sum rule due to Berry[1]. According to the semi-
classical sum rule, those long orbits generate the mean level
density. Based on the numerical evidence that the systems
with and without the scatterer have approximately the same
mean density, we assume that long orbits do not contribute to
the diffractive part of the spectral rigidity; this heuristic ar-
gument is developed in Appendix D. The upshot is that we
can compare the quantityDsL ;Td−D00sLd obtained from ac-
curate quantum mechanical calculations to the semiclassical
expression(4.26) provided we are interested in correlations
in the rangeL@1.

B. Results

1. Calculations

We calculated a set of eigenvalues for a scaled molecule
in the symmetry stateM =0, with a rotational constant cho-
sen so that the scaled energies areeN=0=−0.55 andeN=2
=−0.8, in the rangek=80 to k=150, with average"ef f
.0.01. Such calculations involve about 10 000 states. The
computational method was described elsewhere[14]. x
.148.8 is readily calculated by fitting the spectral staircase
to a second order polynomial ink. Classical calculations for
the shortest orbits are necessary to determine the nonuniver-
sal contribution; these include the actions, monodromy ma-
trix elements, and Maslov indices of the orbits closed at the
nucleus in the scaled hydrogenic problem at the relevant
scaled energies.S is determined for the relevant values of
the scaled energies from the surface of the energy shell in
configuration space.

2. Results

Quantum results for the spectral rigidity are plotted in Fig.
2 for different values of the quantum defects, i.e., for systems
with cores having different properties. Indeed, it follows
from Eqs.(2.2) and(2.3) and from the unitarity of the frame
transformation that ifmS=mP theT matrix is diagonal in the
scatterer quantum numbersN, MN: from a physical stand-
point, this means there is onlyelastic scattering, i.e., the
electron stays within the same potential sheet when it scatters
off the core. WhenmSÞmP, theT matrix is not diagonal and
mixings between Rydberg series belonging to theN=0 core
state on the one hand and theN=2 sMN=−1,0,1d core state
on the other occur; physically, this means both elastic and
inelastic scattering occur, the relative strength between them
being determined by theT-matrix elementsTjj 8.

Figure 2 shows the value of the spectral rigidity deter-
mined from quantum mechanical calculations. Figure 2(a)

DIFFRACTION AND SPECTRAL STATISTICS IN… PHYSICAL REVIEW E 70, 046215(2004)

046215-9



shows the rigidityD00sLd for the scatterer-free system(black
solid line) as well as two examples of a scatterer allowing
only elastic scattering(mS=mP=0.5 andmS=mP=−0.25).
Figure 2(b) again showsD00sLd as well as three cases of
systems with a core allowing also for inelastic scattering(
mS=0.5 mP=0,mS=0.5,mP=−0.15, and the H2 molecule
case with quantum defectsmS=0.22,mP=−0.06). The ge-
neric shape of these curves shows an inflection aroundL
,50 and saturation starting atL,275. This is semiclassi-
cally related to the saturation of the orbit selection function
for each dynamical regime.

Figure 3(a) shows the differenceDsL ,Td−D00sLd for
quantum calculations, which we defined above as the diffrac-
tive contribution to the spectral rigidity. Figure 3(b) displays
our semiclassical results, obtained by appying Eq.(4.26). For
each dynamical regime(eN=0=−0.55 andeN=2=−0.8), we in-
cluded about a dozen orbits, so that in the corresponding
hydrogenic casess* .0.1. The main features of the quan-
tum results are well reproduced by our semiclassical calcu-
lations: in particular, the first inflection atL,50 and the
saturation atL,275 are clearly reproduced. The first inflec-
tion is due to the saturation of the orbits associated with the
scatterer in theN=0 state. Application of Eq.(C3) for the
dynamics ateN=0=−0.55 would, however, yield a larger
value ofLmax

N=0 than is observed in both the quantum and the
semiclassical calculations. The reason is that the shortest or-
bit (perpendicular to the field) has small geometric and dif-
fractive amplitudes compared to the large amplitudes of the
longer balloon orbit(which lies in scaled energy just above

its bifurcation point from the orbit parallel to the field). The
saturation of the diffractive rigidity visible beyondL,275
corresponds to the shortest orbit existing in theN=2, uMu
=1 potential sheets; the contribution of the orbits in theN
=2, M =0 potential sheet is considerably less important, due
to the fact that the orbit perpendicular to the field(the main
orbit at e=−0.8) is suppressed in the diffractive process
when m=0 [32]. Note that in the casemS=0.22mP=−0.06
the curve saturates atL,50 rather than displaying an inflec-
tion: this is readily explained by the fact that, for such values
of the quantum defects, theT-matrix elementsT2±1,2±1 are
very small and therefore the contribution of theN=2, uMu
=1 potential sheets to the diffractive rigidity is negligible;
the orbits associated with the scatterer in theN=0 state
dominate the shape of the curve, and the second saturation at
L,275 is hardly visible. Generally speaking, the slopes of
the curves in the three main intervals(L,50,50,L,275,
and saturation forL.275) depend on the strength of the
T-matrix elements. They also depend on the relative
strengths of the universal and nonuniversal terms. In particu-
lar, note the crossing atL,200 between the curves corre-
sponding to scatterers havingmS=0.5 mP=0 and mS=mP

=−0.25, which is adequately reproduced by the semiclassical
calculations. This crossing results from the competition be-
tween the nonuniversal and universal terms; the nonuniversal
terms(which dominate the curve for largeL) are larger in the
mS=mP=−0.25 case, whereas the universal terms are consid-
erably larger for a core scatterer withmS=0.5 mP=0.

C. Discussion

We have seen that the semiclassical formalism developed
above gives an adequate explanation of the diffractive rigid-

FIG. 2. Spectral rigidity determined from calculated quantum
spectra.(a) The black solid curve corresponds to the scatterer-free
system whereas the curves underneath correspond to two examples
of systems with equal quantum defects allowing only for elastic
scattering:mS=mP=−0.25 (upper line) and below mS=mP=0.5
(lower line). The straight dashed line is theL /15 limiting curve.(b)
The black solid curve corresponds again to the scatterer-free system
and the curves underneath to systems with scatterers allowing for
inelastic scattering: from top to bottommS=0.22mP=−0.06
(dashed curve), mS=0.5 mP=0 (dotted line), and mS=0.5 mP

=−0.15(dot-dashed curve). In each case, the inset gives an enlarged
view of the rigidity for smallL.

FIG. 3. Diffractive contribution to the spectral rigidity for sys-
tems with different scatterers whose properties depend on the values
of the quantum defects: going from the most rigid to the less rigid
spectrum we havemS=0.22mP=−0.06 (dashed curve), mS

=0.5 mP=0 (dotted curve), mS=mP=−0.25 (upper solid line), mS

=0.5 mP=−0.15(dot-dashed curve), andmS=mP=0.5 (lower solid
line). (a) shows the results obtained from quantum calculations by
subtracting the curves for systems with scatterers in Fig. 2 from the
scatterer-free system line.(b) displays the semiclassical results ob-
tained within the approximations discussed in the text.
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ity obtained from the quantum mechanical levels. We now
discuss further aspects, and in particular the limitations of
the results presented in this paper.

The main limitation, not yet mentioned, concerns the sen-
sitivity of Eq. (4.26) to the number of orbits included in the
nonuniversal part ofDGD+DDD. As more orbits are added,
the curves for the diffractive rigidity tend to be translated
(generally downward). In his discussion of this tiny but im-
portant range composed of nonuniversal terms, Berry[30]
pointed out that the final result would be independent of the
number of orbits included in the nonuniversal part, provided
the conditionz,z* was respected[see Eq.(4.5)]. This was
not the case here, and although the shapes of the different
curves were not modified when the number of orbits in-
cluded in the nonuniversal part was increased, the value of
DGD+DDD on the vertical scale changed, since the curves
underwent an overall translation. To plot Fig. 3(b), we have
accordingly rescaled the semiclassical results so that the
saturation value concords approximately with the quantum
results. We emphasize that all the semiclassical results were
multiplied by an identical global factor(so that the rescaling
is related only to the number of orbits in the nonuniversal
term independently of the scatterer properties). The reason
for such a behavior may be related to the fact that our scaled
energies correspond to a phase space of mixed type: instead
of having amplitudes exponentially decreasing with the pe-
riod (as would be expected in a chaotic regime), our classical
calculations display strong focusing effects, yielding large
amplitudes for certain orbits or their repetitions, indepen-
dently of their length(this is of course typical of stable orbits
in mixed phase space). Moreover, we have employed classi-
cal sum rules generally valid for a chaotic phase space in a
mixed phase space situation. Indeed, the ergodic average, if
properly done, should not be taken on the entire energy sur-
face, since a fraction of the orbits are confined to invariant
tori (but then it is not obvious, given the approximations
made, how to derive mean properties of a typical orbit). Of
course, the derivation of the diffractive Green’s function is
valid regardless of whether the classical motion is chaotic or
not, provided the diffractive orbits are isolated. We also note
at this point that exploring the chaotic regime(which would
be more meaningful for comparing quantum and semiclassi-
cal results from a quantitative standpoint) would involve
quantum calculations at higher scaled energies, and therefore
higher energies ifk is kept constant, which would be com-
putationally too expensive.

Another limitation is visible by observing the curve for
mS=mP=0.5, which is relatively larger in the semiclassical
calculations than the quantum results indicate. The most
probable cause for this mismatch is due to the inclusion of a
single scattering in the formulas derived in this paper. In-
deed, although each scattering process is reduced by a factor
"1/2 [cf. Eq. (3.25)], for finite values of" diffractive orbits
with more than one core scatterer will need to be included if
the T matrix is large orm12 is very small for the orbits in-
cluded in the nonuniversal term. FormS=mP=0.5 the diag-
onal T-matrix elements are maximally large, and fore
=−0.55 many of the shortest orbits have a large classical
amplitude(smallm12). Therefore diffractive orbits with mul-
tiple core scatterers will probably have a more important

effect than for smaller values of theT matrix. Note that such
orbits can involve combinations of closed loops belonging to
different potential sheets(i.e., built on different core states),
as portrayed on Fig. 4. On the other hand, due to the scaling
properties of our problem(in particular, the scaled phase
space volume does not depend on"), we do not expect a
significant contribution from the mean properties of long or-
bits with multiple core scatterers, obtained by successive ap-
plication of the classical sum rules[3].

It was recently shown that in chaotic systems with a
pointlike interaction(a d scatterer), the off-diagonal contri-
butions to the form factor(diagonal or geometric correlations
encapsulated here inK0D) canceled exactly the contribution
arising from correlations between diffractive orbits(encapsu-
lated inKDD-like terms) [4,5]. The underlying reason for this
effect, due to the conservation of the probability during the
scattering process, is based on the unitarity relations for the
(single channel) T-matrix element. It is therefore of interest
to see whether such a cancellation occurs in the present case.
In the multichannel case, the unitarity equation for the diag-
onal elements reads[33]

Im Tjj + o
i

uTji u2 = 0. s5.1d

Therefore, comparing with Eq.(4.26), we see that in the
general case, to lowest order in", there is no cancellation
between the geometric or diffractive correlations and the “di-
agonal” diffractive correlations because of the nondiagonal
T-matrix elements, and this is indeed verified in our calcula-
tions. Comparing Eq.(5.1) with Eq. (4.26), we see, however,
that the universal term inside the square brackets in Eq.
(4.26) approximately vanishes if theT matrix is diagonal and
m=0. We noted above that whenmS=mP the nondiagonal

FIG. 4. Example of a higher-order process with multiple scat-
tering: a wave travels fromr 1 to r 2 in the same potential sheet after
scattering twice with the core and having followed a closed orbit in
another potential sheet.
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T-matrix elements do vanish, but the universal terms in Eq.
(4.26) are not simultaneously canceled for all the values ofj .
This feature appears as a consequence of the approximations
made in deriving Eqs.(4.18) and(4.25) rather than a generic
characteristic of multilevel scatterers.

VI. CONCLUSION

In this work, we have derived the corrections to the den-
sity of states when a multilevel scatterer is added to a system
that can be treated semiclassically. We employed as a model
a scaled Rydberg molecule in a magnetic field. The core–
Rydberg-electron collision results in a “diffraction” of the
semiclassical waves, accompanied by a change in the poten-
tial sheet of the outer electron. The relevant Green’s function
was obtained and employed to derive a first-order semiclas-
sical expression giving the diffractive contribution to the
spectral rigidity. This expression was tested by comparing
with the spectral rigidity obtained from accurate quantum
calculations, yielding a qualitative and semiquantitative
agreement. Indeed, semiclassics gives an interpretation of the
spectral statistics that cannot be obtained in any other way.
The quantitative results, while reproducing the main features
of the diffractive contributions to the rigidity, suffer from the
shortcomings discussed above. It does appear, however, that
these shortcomings arise from system specifics(mixed phase
space," not small enough) rather than hinging on the method
employed.

APPENDIX A

We relate the propagation of the density as it appears in
Eq. (3.13) to the prefactor in the semiclassical Green’s func-
tion by directly evaluating

Jst,q0
'd = U ]q

]t
U

q0
'
U ]q

]q0
'U

t

− U ]q'

]t
U

q0
'
U ]q

]q0
'U

t

sA1d

for our problem at hand. The index 0 refers to the initial
point, which is located on the initial surface(the boundary
circle). We assumeq0

' is a cyclic coordinate, and sinceq̇'

;0 we obtain by manipulating partial derivatives that

U ]q'

]t
U

q0
'

= 0 sA2d

and

U ]q'

]p0
'U

q0
'

= U ]q'

]p0
'U

t

. sA3d

We now useu]q/]tuq0
'= q̇ and the above equation to establish

Jst,q0
'd−1 =

1

q̇
U ]p0

'

]q'U
q0

'
U ]q0

'

]p0
'U

t

sA4d

=Dq̇0U ]q0
'

]p0
'U

t

. sA5d

The last term in Eq.(A5) is evaluated explicitly on the
boundary circle(where the magnetic field is negligible and

the Hamiltonian just incorporates the Coulomb field).
For example, if we use polar coordinates, the initial Jaco-

bian on the boundaryJ3st0,uiqd that appears in Eqs.(3.13)
and (3.15) becomes

J3st0,uiqd = r0
2 sinuiqṙ sA6d

where we put

U ]uiq

]puiq

U
t

= uṙ ur=r0
= sr0/2d−1/2 sA7d

since we assumepuiq
=0 on the boundary circle. If we use

another set of coordinatessq,q'd as in Sec. III C 2, then

q̇ =
]sq,q'd
]sr,ud

ṙ . sA8d

APPENDIX B

To obtain the amplitude term of the diffractive DOS as
given in Eq. (3.25), it is useful to start from the Green’s
function between points on the boundary surface
Gscskd

j sr0,uik ; r f ,u fkd. Using the coordinate system given in
Sec. III C 2 and transforming back to polar coordinates, we
have, using Eqs.(A7) and (A8),

Gscskd
j sr i ;r fd =

1

"Î2p"

1

r0
5/423/4Îsinuik sinu fk

U ]uik

]u fk
U1/2

3exphifSksr 8,r d − mkp/2 − 3p/4gj. sB1d

Equation(3.25) is obtained by expressing the angular deriva-
tive in terms of the stability matrix elementm12skd expressed
in semiparabolic coordinates(see, e.g.,[27]) as

U ]uik

]u fk
U =

r0
1/2

21/2m12skd
. sB2d

APPENDIX C

Whereas the spectral form factor contains information
specific to geometric or diffractive orbits, the shape of the
spectral rigidity depends on the orbit selection function

Gsnd ; 1 − F2snd − 3fF8sndg2, sC1d

where Fsnd= sinn /n. Following the scaling properties, we
have

n =
LSj

2x
= pLs j . sC2d

The orbit selection function saturates when the argumentn
*p. The maximum value ofL at which Gsnd saturates is
therefore given by

Lmax
j =

2px

Smin
j , sC3d

whereSmin
j is the scaled action of the shortest classical orbit

in the potential sheet corresponding to the scatterer in state
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u jl. We will drop the indexj below, but we emphasize that
since the particle in our system can be in different potential
sheets, there are different values ofLmax. We therefore expect
inflections in the shape of the spectral rigidity when the ac-
cumulation of orbits in the potential sheetu jl reaches the
shortest orbit. The saturation observed in the rigidity corre-
sponds to the potential sheet with the shortest orbits: here the
scaled action of the shortest orbit decreases with the scaled
energy.

Whereas in the scatterer-free system the rigidity involves
(in the range 1!L!Lmax for which the classical sum rule
form of the form factor is appropriate) integrals of the form

E
s*

1 ds

s
GspLsd, sC4d

the relevant integral for the diffractive contributions to the
spectral rigidity is

JsLd =E
s*

1

dsGspLsd

=
1

2p4L4y3uf− 1 − 2p2L2y2s2 + p2Ly + p2L2y2d

+ s1 + 2p2L2y2dcos 2Lpy + 2pLy sin 2Lpy

+ 4p3L3y3Si2Lpyguy=1
y=s* . sC5d

(Si stands for sine integral.) Note that, for large values of
L@Lmax, JsLd<1 and therefore the integralIsLd defined by
Eq. (4.19) asIsLd=2pxJsLd behaves as

IsL @ Lmaxd < 2px. sC6d

For general values ofL, it is furthermore easy to show that in
the semiclassical limit"ef f→0, we have

IsLd <
x

p3L4f1 + 4p2L2 + 2p4L4 − s1 + 2p2L2dcos 2pL

− 2pL sin 2pL − 4p3L3Si2pLg. sC7d

APPENDIX D

Employing the indexD as a shorthand for the overall
diffractive contributions (i.e., DD;D0D+DDD), we have
DsLd=D0sLd+DDsLd. Each of these two terms is written in
terms of the form factor with the help of Eq.(4.13). It then
follows that

DsLd − D0sLd = FDDss , s * d +
x

p
E

S*

2px

KDssdGsnd
dS

S2G
+ E. sD1d

The term between square brackets is our semiclassical
result (4.26). Using Gsnd,1 for long orbits(and L@1), E
can be formally written as

E =
x

p
E

2px

`

fK0ssd + KDssdg
dS

S2 −
x

p
E

2px

`

fK0ssdg
dS

S2 .

sD2d

But since with a suitable limiting process the Laplace
transform of the form factor yields the mean level density,
the fact that the mean level densities are the same in systems
with and without a scatterer indicates thatE,0. Note that
this is consistent with theL /15 behavior observed for small
L in Fig. 2, which is independent of the core properties. To
this approximation, Eq.(D1) indicates that our semiclassical
result(4.26) is identical with the differenceDsLd−D0sLd that
we calculate quantum-mechanically.
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