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Closed-orbit theory for molecules in fields
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Closed-orbit theory was initially developed as a qualitative and quantitative tool to interpret the dynamics of
excited hydrogen in static external fields: the modulations in the photoabsorption spectrum were explained in
terms of classical orbits closed at the nucleus. We consider the closed-orbit theory formalism appropriate for
molecules in fields. The theoretical extensions are described, and semiclassical calculations based on this
formalism are undertaken and compared to quantumR-matrix calculations for model molecules in a static
magnetic field. We find that the spectral modulations can be analyzed simply in terms of the scattering of the
excited electron on the molecular core. In addition to elastic scattering, modulations produced by inelastic
scattering are essential to account for the photoabsorption spectrum. Through this process, an electron along a
closed orbit in the classically chaotic regime exchanges energy with the core and comes out along an orbit in
the near integrable regime. The relative importance of elastic and inelastic scattering depends on the molecular
quantum defects.
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I. INTRODUCTION

The hydrogen atom in a magnetic field is a well-know
@1# paradigm of ‘‘quantum chaos’’—the study of quantu
systems possessing a classically chaotic counterpart. Ind
a highly excited Rydberg electron in a static magnetic fi
senses both the spherical Coulomb and the cylindrical m
netic fields; classically, the system is nonseparable, and
trajectories are chaotic. Quantum mechanically, the photo
sorption spectrum displays complex structures. Ever si
the quasi-Landau oscillations in the photoabsorption sp
trum of barium were associated with the classical motion
the electron in the plane perpendicular to the field axis@2,3#,
the large-scale structures of such spectra have been as
ated with classical orbits. This correspondence was h
lighted further by taking advantage of scaling properties p
sessed by those systems. The external fields then play
role of an effective Planck constant, and the quantum sys
can be studied, theoretically or experimentally, at some fi
dynamical classical regime while effectively changing t
Planck constant.

A major advance was achieved with the advent of clos
orbit theory, first introduced for the hydrogen atom by Bog
molnyi @4# and by Du and Delos@5#, and developed to a
large extent by Maoet al. @6#, Gao and Delos@7#, and Main
et al. @8#. Closed-orbit theory consists of a fully quantitativ
approach in which the large-scale structures of the photo
sorption spectra are explained in terms of classical traje
ries closed at the nucleus, i.e., those that leave from
return to the core. Each orbit produces on its return an os
lation in the photoabsorption cross section; the Fourier tra
form of the spectrum, known as therecurrence spectrum,
therefore exhibits sharp peaks at the period~or scaled action,
if the scaling properties are used! of the orbits. Experimenta
and theoretical recurrence spectra for hydrogen in a magn
field were found to be in very good agreement@8#. The same
closed-orbit formalism can also be applied to study the
sorption spectrum in a strong electric field: only the prop
ties of the classical trajectories~which are not chaotic in this
case! need of course to be modified.
1050-2947/2002/66~1!/013410~17!/$20.00 66 0134
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Closed-orbit theory was also extended to treat the cas
nonhydrogenic Rydberg atoms. In addition to the stron
back-focused Coulomb scattered waves, which lead to
etitions of the closed orbits in the hydrogenic case, the ph
shifts induced by the core on the electron’s wave function
traditionally known as quantum defects—give rise to co
scattered waves. Gao and Delos@7# incorporated the quan
tum defects in the closed-orbit formalism but concluded th
for the system under consideration, the effect of the co
scattered waves was insignificant and could be omitted fr
the final formulas. However, the first fully quantum
mechanical calculations for nonhydrogenic atoms in a m
netic field at fixed scaled energies@9# showed strong reso
nance structures in the recurrence spectra, which seemi
could not be explained by closed orbits of the hydroge
problem, together with a reduction in the recurrence stren
of the contributions from the long-period orbits. These o
servations were confirmed subsequently by experime
measurements of diamagnetic helium atoms and the a
tional peaks identified as being due tocombinationsof hy-
drogenic closed orbits that arise from scattering with the c
@10#. Similar structures were also observed in the experim
tal spectra of lithium atoms in a static electric field@11#.

In an attempt to provide a semiclassical description
these additional peaks, two differing approaches were p
posed. One approach@12#, treated the core-Rydberg electro
interactions by employing a model potential which led to t
creation of new orbits. This method involved the calculati
of several thousand orbits~compared to a couple of dozen fo
the hydrogen atom at the same scaled energy! and gave only
a global qualitative agreement.

An alternative approach@13#, which allowed for the
breakdown of classical path methods at the core, was m
successful. Here, the core-scattered modulations were
scribed as resulting from successive diffractive encounter
the Rydberg electron with the core: the wave function f
lows the well-knownhydrogenicclassical orbits in the region
where the Coulomb and the external fields compete~the
‘‘outer region’’!, but near the core, where the external fiel
©2002 The American Physical Society10-1
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are negligible~the ‘‘inner region’’!, the wave function is de-
scribed quantum mechanically. Good quantitative agreem
between quantum calculations and closed-orbit theory fo
atom with a quantum defectm l 5150.5 was obtained both fo
the diamagnetic and Stark photoabsorption spectra.

In the present paper, we follow the latter approach to
tend closed-orbit theory to the more general case of mu
channel core scattering. Indeed, up to now, only sing
channel scattering has been assumed. However, a ty
Rydberg atom does experience multichannel scattering
which both the quantum state of the core and of the Rydb
electron may change during the collision. This is also
case for even the simplest molecules, which present mult
Rydberg series converging to different ionization thresho
General Rydberg atoms and molecules in the field-free c
are described by a formalism known as multichan
quantum-defect theory~MQDT! @14,15#. Here, our multi-
channel extension will be more specifically focused to tr
photoabsorption for molecules in a strong magnetic fie
The same method may be used for atoms~by changing the
quantum numbers and the frame transformation element! or
for other choices of external fields~by changing the param
eters of the classical trajectories!. The heart of our approac
relies on connecting the Green’s functions in the inner a
outer regions. In the inner region, the Green’s function
extracted from the MQDT wave functions by following th
method described in@16#; propagation in the outer region i
achieved as in the usual form of closed-orbit theory by f
lowing the formalism due to Maslov and Fedoriuk@17#. Re-
cently, an alternative approach merging MQDT and clos
orbit theory with the aim of treating multichannel co
scattering was presented@18#; rather than directly matching
Green’s functions, this approach is based on a semiclas
approximation to the long-range scattering matrix, repres
ing the phase accumulated in the outer region and obta
from the semiclassical Green’s function. Only model calc
lations were presented in@18#.

Rydberg molecules in a strong magnetic field have
ceived little attention, especially if compared to the countl
experimental and theoretical studies performed on atoms
deed, even the linear Zeeman effect, which is trivial for
oms, induces mixing between different rotational core sta
This was first seen in calculations for the photoabsorpt
cross section from the ground state of H2 @19#. It was also
experimentally observed in NO, and a detailed theoret
account using MQDT of the uncoupling of the electron fro
the core for moderately low-Rydberg states was given@20#.
However, for higher-Rydberg states, the diamagnetic inte
tion dominates, which ruins any attempt to explain the d
namics on a MQDT basis. AlthoughR-matrix calculations
have been undertaken successfully for H2 @21#, a dynamical
interpretation of the photoabsorption spectra seems only
sible by resorting to semiclassical analysis. This has b
achieved only recently and the results were reported in@22#:
the spectral modulations were interpreted in terms of ela
and inelastic diffractive scattering of the Rydberg electron
the molecular core.

The present paper is organized as follows. In Sec. II,
give a brief summary ofatomicclosed-orbit theory, togethe
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with the basic equations. Section III presents multichan
molecular closed-orbit theory. We first give an overview
the physics of such systems, and then go into a deta
presentation of the formalism. Section IV describes
method employed to perform quantum calculations. Our
sults are presented in Sec. V: we compare quantum and s
classical calculations for various ‘‘model’’ molecules havin
different quantum defects. It will be seen that the appeara
of the recurrence spectra are indeed governed by the c
scattering process. The inclusion of some higher-order
fects~in \) is also discussed. Finally, in Sec. VI, we prese
our conclusions. Atomic units are used throughout, with
\ factors reestablished where appropriate.

II. CLOSED-ORBIT THEORY

In atomic closed-orbit theory, two different regions
space are identified: a region near the core (r ,r 0 ; r 0;50
Bohr radii! where the external field can be neglected bu
quantum description is required, and an outer regionr
.r 0) where a semiclassical description is feasible. When
atom absorbs a photon, the excited electron leaves the
region in a near zero-energy outgoing Coulomb wave at
initial angle u i , to the field direction. Forr .r 0, the wave
propagates semiclassically, following classical trajector
Eventually, these trajectories are turned back by the co
bined action of the Coulomb potential and the external fie
Some of the trajectories return to the vicinity of the co
region at an angle of incidenceu f , to the field direction.
Here again a quantum description is needed and a scatte
wave function can be constructed. The outgoing part of
scattered wave is comprised of two components: aCoulomb
scattered wave and, for nonhydrogenic atoms,core-scattered
waves. The Coulomb scattered waves are strongly back
cused and result in repeated traversals of the trajectory.
core-scattered waves redistribute amplitude into other clo
orbits.

The result is a formula for the average oscillator-stren
distribution f, that consists of a slowly varying backgroun
term f back, together with an oscillatory partf 1, involving a
sum of contributions over all closed orbitsk, of the system,

f 1~E!52
2~E2E0!

p
Im(

k
Nk^DC0uC ret&, ~1!

which arises from the interference between the return
wave scattering at the core, and the original outgoing wa
Here, (E2E0) is the energy of the electron with respect
the zero-field ionization limit of the atomE0, the wave func-
tion of the initial state from which the laser excitation occu
is denoted byC0 , D is the component of the dipole opera
tor relevant for the polarization of the exciting laser, andC ret
is the wave function of the returning wave scattered at
core.

The coefficientsNk , are calculated by matching the sem
classical wave returning to the core with the incoming part
the scattered wave functionC inc(r 0 ,u f k) at the boundaryr
5r 0. The resulting matching equation is
0-2
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CLOSED-ORBIT THEORY FOR MOLECULES IN FIELDS PHYSICAL REVIEW A66, 013410 ~2002!
F0~r 0 ,u ik!A ke
i (Sk1fk)5NkC inc~r 0 ,u f k!, ~2!

whereF0(r 0 ,u ik) is the initial outgoing wave function atr
5r 0 needed to construct the semiclassical wave functionSk
is the classical action of trajectoryk, andfk is an additional
phase term. The effective amplitudeAk is related to the clas
sical amplitude which, in turn, depends upon the stability a
topology of the orbit.

A. Hydrogen

In the case of hydrogen, the initial outgoing Coulom
wavecout(r 0 ,u), at the boundary between the semiclassi
and quantum region is used as a starting condition for c
structing the semiclassical wave

F0~r 0 ,u ik!5cout~r 0 ,u ik!. ~3!

The calculatedNk are then proportional toA ke
iSk. The kth

closed orbit thus leads to an oscillation with frequencySk
and amplitudeAk in the absorption spectrum. Coulomb sca
tering is focused strongly backward and may result in
peated traversals of the orbit; these are connected to harm
ics in the oscillator strength distribution.

The Hamiltonian of the hydrogen atom in external fiel
can be scaled exactly. The scaling results in removing
separate dependence of the Hamiltonian on the electron
ergy and the field intensity by a dependence on a sole pa
eter, the scaled energye. This is shown in Appendix A in the
case of an external magnetic field.

B. Nonhydrogenic atoms

In an extension of closed-orbit theory, Gao and Delos@7#
incorporated the effects of the ionic core in the closed-o
sum. As well as considering the quantum defects that
scribe the nonhydrogenic nature of the core, Gao and D
also included the effects of the nonhydrogenic radial dip
integrals and spin-orbit coupling in the initial state; the
quantities all affect the angular distribution of the outgoi
waves. However, the effect of the nonhydrogenic co
scattered waves was found to be negligible for the sys
considered and hence omitted in the final calculation.

In order to reproduce successfully resonance struct
observed in the Fourier transformed spectra~the ‘‘recurrence
spectra’’! of nonhydrogenic atoms in static magnetic@10#
and electric@11# fields, Dandoet al. @13# included the core-
scattered waves consistently within the closed-orbit form
ism. For a nonhydrogenic atom, the scattered quantum w
function consists not only of an incoming part returning
the core and a Coulomb part scattered back in the direc
of the incoming trajectory but also of an additional outgoin
core-scattered wave

C ret~r ,u!5C inc~r ,u!1CCoulomb~r ,u!1Ccore~r ,u!. ~4!

The effect of the core-scattered waves is to redistribute
plitude into all other closed orbits.
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To incorporate the effect of the core-scattered waves
the closed-orbit sum, the extra outgoing waves are adde
the starting condition for constructing the semiclassical wa
function @13#

F0~r 0 ,u ik!5cout~r 0 ,u ik!1(
q

NqCcore
q ~r 0 ,u ik!. ~5!

Substituting this expression forF0 into Eq. ~2! gives the
following equation for the coefficients,Nk :

NkC inc~r 0 ,u f k!5Fcout~r 0 ,u ik!

1(
q,p

NqCcore
q ~r 0 ,u ik!G(

n
A k

nei (Sk
n
1fk).

~6!

The first term on the right-hand side of Eq.~6! accounts for
the oscillation due to the hydrogenic orbitk, the second term
accounts for all combination orbits for which the electron
finally core scattered from an orbitq into the orbitk. The
harmonics ofk andq are labeled byn andp, respectively.

The resulting matching equation@Eq. ~6!# now hasN val-
ues on both sides and this is most conveniently solved by
iterative procedure. We begin by settingNq on the right-hand
side of Eq. ~5! to zero and obtain a first approximatio
to Nk ; this is equivalent to the hydrogenic closed-orb
result. In each successive step extra terms of the fo
Aq•••Ake

i (Sq1•••1Sk), are added to the previous result. Th
resulting recurrence spectrum thus shows two effects
seen in the hydrogenic case. First, the core casts a ‘‘shad
in the backward direction changing the recurrence strengt
subsequent returns to the core of each trajectory. Sec
there are ‘‘combination recurrences’’ due to the electron tr
eling along one closed orbit and then being scattered by
ionic core on to another closed orbit. In successive step
the iterative process combinations of more and more or
are included.

III. CLOSED-ORBIT THEORY EXTENDED TO
MOLECULES IN FIELDS

We give in this section the developments needed to
derstand molecules in fields within the framework of close
orbit theory. From a formal point of view, the main diffe
ence with the results reviewed in Sec. II concerns
treatment of the core region. Indeed, the dynamics of a
dberg electron along closed orbits in the outer region is id
tical here to the atomic case, but the core scattering wh
governs the way the orbits are combined is intrinsically
multichannel process, which gives rise to effects, such
inelastic scattering. Hence, the inner zone treatment will
based on molecular multichannel quantum-defect the
~MQDT!, which describes Rydberg molecules in field-fr
situations. In the developments that follow below, we sh
make some simplifying assumptions; in particular, we w
disregard electronic interactions and vibrational couplin
which can be very important in many molecules or spec
0-3
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MATZKIN, DANDO, AND MONTEIRO PHYSICAL REVIEW A 66, 013410 ~2002!
symmetries thereof, as well as spin. We expect our mode
be adequate for a simple diatomic molecule such as H2 when
photoabsorption takes place from the ground state to thl
51 ungerade complex. We detail below the extension
closed-orbit theory for such a model. We have tried to follo
the standard notation of quantum-defect theory~see Appen-
dix B! to describe the phenomena in the inner zone. Ho
ever, to allow for a direct comparison with earlier results
closed-orbit theory, we have chosen to keep to the conv
tions ~e.g., for normalization! usually employed in closed
orbit related works, originally introduced in@5#.

A. General picture

1. Dynamical couplings

Generally speaking, MQDT is based on the separation
the long-range Coulomb field from the short-range effe
induced by the core~see Appendix B!. These short-range
effects produce phase shifts in the wave function of the o
electron. Furthermore, the dynamics of a molecular Rydb
electron in the field-free situation falls in one of two situ
tions. Near the core, the electron is strongly coupled to
molecular axis and is best described in the molecular~Born-
Oppenheimer! basis, with good quantum numbersua&
[uLaJal a&; L is the projection of the electronic angula
momentum on the molecular axis,l is the orbital momentum
of the outer electron, quantized along this axis, andJ gives
the total angular momentum. Far from the core,u i &
[uNil i&

JM is an appropriate basis in the field-free situati
(J is conserved,M is its projection on a space-fixed axis, an
N is the angular momentum of the freely rotating core!. But
in the presence of a magnetic field, only the axial symme
remains, i.e.,J is not conserved but its projectionM on the
field axis is; thenu j &[uNj l jmj&

M is an appropriate basis (l is
now quantized in the laboratory frame along the axis of
magnetic field with magnetic quantum numbermj , and M
5MNj

1mj ). Hence, far from the core the electron preces
around the field axis. The uncoupling of the electron dyna
ics from the core may thus be seen as proceeding in
steps, from theua& basis tou i & then fromu i & to u j & @20#, or
alternatively by obtaining a single orthogonal transformat
from the ua& basis to theu j & one, as originally proposed b
Monteiro and Taylor@19# where the transformation elemen
^ j ua& are given explicitly. In what follows, we shall omit th
explicit dependence of the uncoupled basis and transfor
tion elements onM ~an independent calculation must be pe
formed for each value ofM ).

2. Physical picture

As in the atomic case, we divide space into aninner re-
gion around the core, where the magnetic field is negligi
compared to the Coulomb interaction, and anouter region
where the quadratic Zeeman and Coulomb interactions c
pete. The global picture can be staged in eight different s
~see Fig. 1!: ~1! The molecule in its ground state, compac
localized around the core, is excited by a laser;~2! the ex-
cited electron uncouples from the core. The outgoing wa
are propagated quantum mechanically until~3! the electron
01341
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enters the outer region; the wave function is then propaga
along classical trajectories;~4! some trajectories return to th
core: those trajectories define the primitive or geometric
bits; ~5! the Rydberg electron is then again coupled to
molecular core: the returning waves interfere with the i
tially excited waves to produce modulations in the photo
sorption spectra;~6! the Coulomb field backscatters the r
turning waves, resulting in repetitions of the primitive orbit
~7! the core scatters the previously returning waves; t
quantum multichannel process mixes these waves and g
rise to newly outgoing waves which propagate semicla
cally in the outer region; and~8! these waves return onc
more to the core producing additional modulations in t
photoabsorption spectra. The same process is again rep
but each core-scattering event reduces the amplitude of

FIG. 1. Simplified picture of the photoabsorption process giv
rise to recurrence spectra. Each numbered step is described i
text. Panela shows the photoexcitation process~1!; the wave func-
tion of the excited electron propagates quantum mechanically in
inner zone~2!; and semiclassically in the outer zone~3!; the radius
of the outer circle is at about 50 a.u., and the waves travel outw
a few thousand atomic units before being turned back by the m
netic field. Panelb shows the waves returning from the outer zo
along classical orbits~4!, and entering the inner zone~5!, where
they overlap with the initial waves to produce modulations in t
photoabsorption spectrum. Part of the waves are backscattere
the Coulomb field~6!. Panelc gives a schematic view of the recou
pling when the electron returns into the inner zone: as the elec
approaches the core, the wave function, previously described in
uncoupled basisuNjmj& is projected onto the coupled basisuL&, in
which the projection of the angular momentum on the internucl
axis is well defined. The radius of the outer circle is at about 10
The core-scattering process is best described in this basis,
which the coupled waves are recombined to give newly outgo
waves~7! described again in the uncoupled basis, where the r
tional state of the ionic core is well defined. Paneld shows the
outgoing waves traveling in the outer region~7! and returning to the
core ~8!, producing additional modulations in the photoabsorpti
spectrum.
0-4
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modulations and, in the semiclassical, limit additional co
scattering becomes negligible.

B. Initial excitation and quantum propagation

The molecule is initially in its ground state, compact
localized in the core region where the magnetic field is n
ligible. Thus, the ground state is a field-free stateuc0& that
we assume to have the quantum numbersL50 ~hence, aS
state!, J50 andl 50 for the ‘‘outer’’ electron, so that in the
molecular frame~coupled basis!,

uc0&5uL50J50&u l 50l50&Fl 50~r !, ~7!

whereFl 50(r ) is the unknown radial function of the ‘‘outer’
electron. For definiteness, take the laser to be linearly po
ized along the~space-fixed! magnetic field axisẑ and letD
be the dipole operator in the space-fixed frame. The ph
excitation takes place in the region near the core and is
described in the molecular frame. As in the atomic case,
resulting outgoing wave is given byGDuc0& @5# whereG is
the quantum-mechanical outgoing Green’s function,
scribed for the molecular case in Appendix C. Sinceuc0& is
a coupled basis~Born-Oppenheimer! function, the form
given in Eq. ~C3! is the appropriate choice. The outgoin
wave is thus obtained as

cout~r !5225/2p(
j

u j &gl j

1~r !(
a

eipma^ j ua&Da ~8!

with

Da5E 23/2r 83dr8@~ f l a
~r 8!cospma1gl a

~r 8!sinpma!

3^au#D@ uL50J50&u l 50l50&Fl 50~r 8!]. ~9!

The dipole transition will leave the system in states w
Ja51, l a51 andLa50 (S state! or uLau51 (P state! ~we
have assumedLcore50, so lelectr5L). ExpressingD in
terms of molecule fixed components through the direct
cosine matrices@23# and evaluating the rotational par
yields

Da5Ca321E 23/2r 83dr8@ f l a
~r 8!cospma

1gl a
~r 8!sinpma#Fl 50~r 8! ~10!

with Ca51 if uLaJal a&5u011&, Ca5A2 if uLaJal a&
5u111& and Ca50 otherwise.

The excitation process thus restricts the sum overa in Eq.
~8! to the only two states for which CaÞ0. This further
has the consequence of restricting the sum overj to the
values that yield a nonzerô j ua&, namely, uNj l jmj&
5u010&, uNj l jmj&5u210& anduNj l jmj&5u2161&. Since the
energy partition is

E5ENjmj

el 1Nj~Nj11!Br1mjg/2, ~11!
01341
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whereEel is the energy of the outer electron andBr the core
rotational constant, there are two effective dynamical
gimes for the outer electron, each associated with a diffe
rotational state of the core,N50 andN52 ~the dependence
on m through the Zeeman term for theN52 levels is very
small!.

C. Semiclassical propagation

When the outgoing waves enter the outer zone, where
magnetic field cannot be neglected, we resort to se
classical propagation@17#: the wave function is calculated
from the properties of the classical trajectories and from
knowledge of the wave function on an initial surface. As
usual closed-orbit theory@5,7#, let (r i ,u i) define an initial
surface. Equation~8! reads, by explicitly writing the indices

cout~r i ,u i !5 (
Njmj

uNjmj&

3F225/2p (
l j>umj u

gl j

1~r i !Yl jmj
~u i !

3(
a

eipma^ j ua&DaG , ~12!

where the notationYl jmj
(u i), standing forYl jmj

(u i ,0) will be
used throughout. An approximate analytic solution may
obtained by using the zero-energy approximation forgl j

1(r ),

from whichgl j

1(r )→ iH 2l j 11
(1) (A8r )/A8r , whereH2l j 11

(1) is the

Hankel function of the first kind, and the asymptotic appro
mation for large x of the Hankel function H2l j 11

(1) (x)

→(px/2)21/2 exp@i(x2l jp23p/4)#. We then write the mo-
lecular wave function in the outer zone as

c~r ,u!5 (
Njmj

uNjmj&c
Njmj~r ,u!, ~13!

wherecNjmj(r ,u) is the semiclassical wave function asso
ated with the core in stateuNjmj&,

cNjmj~r ,u!5(
k

cout
Njmj~r i ,u ik!Ur i

2 sinu ik

r 2 sinu
U1/2

3Ak
Njmj~r ,u!

3exp@ i ~Sk
Njmj~r ,u!2vk

Njmjp/2!#. ~14!

Ak andSk are the classical amplitude and phase functions
trajectoryk in the 2 dimensional axial plane, andvk is the
associated Maslov index. The superscriptsNjmj on theclas-
sical quantities determine the energy at which the class
trajectories must be calculated, following the energy partit
~11!; the value ofmj also affects the counting ofz axis cross-
ings in the computation of the Maslov index@4,5#.
0-5
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The wave on the initial surface associated with the core
stateNjmj is written cout

Njmj(r i ,u ik) and given by the term
between the square brackets in Eq.~12!; it takes the approxi-
mate analytic form

cout
Njmj~r i ,u ik!52 ip1/223/4r i

23/4

3 (
l>umj u

~21! l jYl jmj
~u ik!ei ~A8r i23p/4!

3(
a

eipma^Nj l jmj ua&Da . ~15!

Note that Eqs.~14! and ~15! have the same structure as t
semiclassical outgoing waves in atomic closed-orbit theo
The overall wave function in the outer zone is a superpo
tion of such wave functions, taken for different dynamic
regimes. But, as expected, the classical dynamics of the e
tron in the outer region does not depend on the presenc
the core.

D. Primitive returning waves

1. Returning waves in the inner region

Eventually, some trajectories in the outer region return
the inner region. The wave function in the part of the ou
region near the inner region, where the magnetic field
weak, is the one carried by the classical trajectories close
the origin. It is given by Eqs.~13!–~15!, where the sum ove
k involves the trajectories that return to the inner region. T
wave function in the inner region is written as a MQD
expansion in the uncoupled basis, Eq.~B5!,

c1~r !5(
j

u j &(
j 8

cj 8@d j j 8 f l j
~r !1Tj j 8gl j

1~r !#, ~16!

where the superscript 1 indicates the first return to the in
region. The coefficientscj are obtained by matchingc1 to
Eq. ~13!. Orthonormality of the core states leads to an ind
pendent matching for eachNjmj subspace. We thus break th
radial standing-wavef l j

in Eq. ~16! into incoming and out-

going components: following Eq.~B4!, we have f l5(gl
1

2gl
2)/2i . Hence,

(
l j

2cl j

NjmjYl jmj
~u f !gl j

2~r f !/2i 5cNjmj~r f ,u f !, ~17!

where we have written explicitlycj[cl j

Njmj . We now use the

orthonormality of the spherical harmonics, to write

2cl j

Njmjgl j

2~r f !/2i 52pE
0

p

du f sinu fYl jmj
* ~u f !c

Njmj~r f ,u f !,

~18!

and perform the integration for each trajectoryk using the
stationary phase approximation along the angle of stat
ary phase. Proceeding as in@12#, we write the action at
(r f ,u f) for the kth trajectory asSk

Njmj(r f ,u f)5Sk(closed)
Njmj
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2A8r f cos@(uf2ufk)/2#, whereSk(closed)
Njmj is the action of the

kth trajectory closed at the origin. The angle of stationa
phase is then simplyu f k and the stationary phase integratio
leads to

2cl j

Njmjgl j

2~r f !/2i 5
2p~2p\!1/2eip/4

221/4r f
1/4

3H(
k

Yl jmj
* ~u f k!r i r f

21

3usinu ik sinu f ku1/2Ak
Njmj~r f ,u f k!

3exp@ i ~Sk(closed)
Njmj 2A8r f2A8r i

2vk
Njmjp/2!#cout

Njmj~r i ,u ik!J . ~19!

Choosing r f5r i , using the zero-energy approximatio
gl j

2(r )→2 iH 2l j 11
(2) (A8r )/A8r , whereH2l j 11

(2) is the Hankel

function of the second kind, together with the asympto
approximation toH2l j 11

(2) , we obtain our final expression fo

the coefficients

cl j

Njmj5\1/223/223p2r f
1/2e2 ip/2H(

k
Yl jmj

* ~u f k!

3~21! l j 11usinu ik sinu f ku1/2Ak
Njmj~r f ,u f k!

3exp@ i ~Sk(closed)
Njmj 2A8r f2vk

Njmjp/2!#

3cout
Njmj~r i ,u ik!J . ~20!

2. Contribution to the oscillator strength

These primitive returning waves contribute to the oscil
tory part of the oscillator strength through the imaginary p
of ^Dc0uG1uDc0& @5# which we rewrite here aŝc0uDuc1&,
i.e., the overlap of the initially excited waves with the retur
ing waves. Following the same arguments given in S
III B, in order to calculate the dipole transition,c1 must be
written in the coupled frame. Using Eqs.~B3! and ~B4!, we
have

c1~r !5(
a

ua&caeipma@ f l a
cospma1gl a

sinpma#,

~21!

where the expansion coefficientsca are obtained from the
coefficientscj of Eq. ~20! via the frame transformation~B7!.
ca represents the weight of the returning waves com
along all the trajectoriesk closed at the origin~and for all of
the allowed dynamical regimes of the Rydberg electron,
dexed by Njmj ) that find themselves recombined in th
coupled channela. This recombination depends both on th
characteristics of the classical trajectories and those of
quantum transformation coefficients. Using Eq.~9!, we ex-
press the overlap as
0-6
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^c0uDuc1&5(
a

caeipma223/2Da* . ~22!

This expression is evaluated by expanding the coefficientca
in terms of thecj and by using the united atom approxim
tion. This approximation consists of setting the radial in
gral appearing in Eq.~10! to some unknown valueindepen-
dentof a. We thus determine relative oscillator strengths a
accordingly replaceDa by Ca ~the united atom approxima
tion is known from field-free experiments to be adequate
H2; in the general case, relations between the radial integ
for different values ofa may be extrapolated from field-fre
ab initio calculations or from experimental data!.

The final result is

^c0uDuc1&5\1/2215/4p5/2

3(
j H (

a,a8
^ j ua8&^au j &CaCa8e

ip(ma1ma8)J
3(

k
Rk

j ~23!

with

Rk
j 5usinu ik sinu f ku1/2r f

21/4Ak
Njmj~r f ,u f k!

3exp@ i ~Sk(closed)
Njmj 2vk

Njmjp/223p/4!#

3 (
l j>umj u

(
l j 8>umj 8u

~21! l j 8Yl j 8mj 8
~u ik!

3~21! l jYl jmj
* ~u f k!. ~24!

Note that, for the orbit along the magnetic field axis w
u ik5u f k50, R k

j as given by Eq.~24! is identically zero and
must be modified following the prescription given in Appe
dix D.

The imaginary part of Eq.~23! gives the sinusoidal modu
lations contributed by each orbitk of the electron associate
with a given stateNjmj of the core. In the present model th
sum overj runs over the four allowed core states andl 51.
For N52 m50,61 the actions are smaller and the resulti
modulations are larger than for the orbits associated withN
50 m50. Note that the contributions of the classical orb
for the different values ofj are combined through the term
between braces which reflects the inner-region quantum
namics.

E. Core-scattered outgoing waves

The outgoing part ofc1(r ) @Eq. ~16!# contains two dif-
ferent terms. First, the wave scattered by the Coulomb fi
composed from the outgoing parts off l j

; on the boundary

radius, we havegl j

1(r f)'2e2iA8r fe23ip/2gl j

2(r f), so taking

into account the increase of the Maslov index by one at
origin, the Coulomb scattered waves are simply given
e2iA8r fe2 ipcNjmj(r f ,u f): as in atomic closed-orbit theory@7#
these waves are strongly backward focused, retracing
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original orbits in reverse without changing the state of t
core. Their contribution to the modulations of the photoa
sorption spectra is taken into account by keeping track of
orbit repetitions and we shall not be concerned by th
waves in what follows.

The second term, namely,

ccore
1 ~r ,u!5 (

Njmj

uNjmj&(
l j

Yl jmj
~u!gl j

1~r !(
j 8

cj 8Tj j 8 , ~25!

represents the core-scattered waves: each newly outg
wave leaving the core in stateuNjmj& results from the scat-
tering into channelj from waves that previously returned int
channel j 8, i.e., with the core being in a stateuNj 8mj 8&.
These interchannel mixings are formally represented by
T-matrix elements.

These outgoing waves leave the inner region and pro
gate semiclassically in the outer region. The procedure
scribed in Sec. III C is now applied to Eq.~25!. We have in
the outer region

ccore
1 ~r ,u!5 (

Njmj

uNjmj&ccore
Njmj~r ,u! ~26!

with

ccore
Njmj~r ,u!5(

q F ip21/2227/4r 23/4ei (A8r i23p/4)

3(
j 8

cj 8Tj j 8 (
l j>umj u

Yl jmj
~u iq!~21! l jG

3Ur i
2 sinu iq

r 2 sinu
U1/2

Aq
Njmj~r ,u!exp@ i ~Sq

Njmj~r ,u!

2vq
Njmjp/2!#. ~27!

Some trajectoriesq eventually return to the core, and th
returning wave is matched to a MQDT expansion analog
Eq. ~16!,

c2~r !5(
j

u j &(
j 8

dj 8@d j j 8 f l j
~r !1Tj j 8gl j

1~r !#, ~28!

where the superscript 2 stands for the second return to
inner region. The coefficientsdj are obtained by matching
this expansion to the semiclassical returning waves@cf. Eqs.
~17!–~20!#. Note thatdj , similar to Eq.~20! with cout

Njmj re-
placed by the term between brackets in Eq.~27!, contains
terms of the form

(
k,q

Aq
Njmj exp@ i ~Sq

Njmj2vq
Njmjp/2!#

3Ak
Nj 8mj 8exp@ i ~Sk

Nj 8mj 82vk
Nj 8mj 8p/2!#, ~29!

which clearly combine a classical trajectoryk associated with
a core in stateuNj 8mj 8& and a trajectoryq associated with a
core in stateuNjmj&.
0-7
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The contribution to the oscillator strength is given by t
overlap of these returning waves with the initially excit
waves,

^c0uDuc2&5(
a

daeipma223/2Da* , ~30!

which may be written in terms ofcj and takes the form

^c0uDuc2&5(
j , j 8

(
a,a8

^ j 8ua8&^au j &CaCa8e
ip(ma1ma8)

3F\1/2215/4p5/2(
k

Rk
j 8G

3F\1/2211/4p3/2Tj j 8(
q

Rq
j G , ~31!

where the classical quantitiesR are given by Eq.~24! and, as
explained above, must be modified whenu50 or p follow-
ing the prescription given in Appendix D. The sum over t
closed classical orbits contains implicitly a sum over the r
etitions. The last bracket~with the trajectories labeledq)
represents the orbits consecutive to core scattering and
accordingly weighted by the quantum scattering matrix e
ment Tj j 8 , the transition amplitude connecting the wav
which originally enter from channelj 8 and leave in channe
j. Hence, Eq.~31! takes into account both elastic (Ej5Ej 8)
and inelastic (EjÞEj 8) scattering, and vanishes if there is n
core scattering. Note that in the case of single-channel s
tering, Eq.~31! reduces to the one core-scatter approxim
tion obtained in the atomic case@13#.

Note also that further iterations may be taken into acco
if necessary: the waves that return to the inner region for
second time are scattered by the core, and produce n
outgoing waves given by( j u j &( j 8dj 8Tj j 8gl j

1(r ). These

waves propagate in the outer region; Eq.~26! holds for
ccore

2 (r ,u) provided the coefficientscj in Eq. ~27! are re-
placed by thedj ’s, and the eventually returning waves a
matched to a new MQDT expansion with coefficientsej .

F. Scaled energy spectra

1. Scaling the rotational constant

As in the case of nonhydrogenic Rydberg atoms, the se
classical formulas derived above only contain the class
trajectory parameters corresponding to thehydrogeniccase.
Hence, the scaling transformations for a hydrogenic elec
in a magnetic field, given in Appendix A, were employe
leading to calculations at some fixed value of the scaled
ergy e5Eg22/3 with an effective Planck constant\eff
5g1/3\. From Eq.~11!, it is clear that the present problem
does not yield an exact scaling property; multiplying bo
terms of the equation byg22/3 and neglecting the Zeema
shift leads to

eN505eNj
1g22/3BrNj~Nj11!. ~32!
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Thus, if for example the classical dynamics of the electr
associated with the core in stateN50 is kept fixed~i.e.,
eN50 is constant!, the classical dynamics of the electron a
sociated with the core in stateN52 will vary with g22/3,
thereby encompassing different classical regimes.

If we now set B̃r5g22/3Br to be a constant, Eq.~32!

reads eN505eNj
1B̃rNj (Nj11) resulting in simultaneous

scaling of the various classical dynamics of the electron. T
procedure amounts to introducing in our calculations an
tificial g2/3 dependence of the rotational constant. Indeed
the scaled spectrum is calculated in an interval@g1

21/3,g2
21/3#

with the midpointgmid
21/35 1

2 (g1
21/31g2

21/3), we set

Br~g!5gmid
22/3g2/3Br , ~33!

where Br(g) is the rotational ‘‘constant’’ for our mode
which coincides with the physical rotational constantBr for
g21/35gmid

21/3, and which has the important property of yield

ing a fixed value of the ‘‘scaled rotational constant,’’B̃r
5g22/3Br(g). The consequences of such a choice will
discussed in Sec. VI. We note, however, that the use of s
ing techniques in molecular systems, which typically hav
nonscaling Hamiltonian, has been advocated@24# as an effi-
cient manner of extracting the underlying classical mot
that appears in quantum spectra.

2. Scaled absorption rate

The rate of production of excited molecules is given by
smooth background plus oscillatory contributions. The os
lating part of the absorption rate,F(g,e), is related to the
oscillator strength of Eq.~1! by @8#

F~g,e!5g21/6
f 1~g,e!

E2E0
. ~34!

At fixed values ofe, this reduced absorption rate reads

F~\eff!5
2

p\eff
1/2 (

P
Im@^c0uDucP&#, ~35!

whereP counts the number of returns to the core region. F
example, taking into account only terms up toP52 gives
@Eqs.~23! and ~31!#

F~\eff!5219/4p3/2(
j

(
a

(
a8

ImH ^au j &CaCa8e
ip(ma1ma8)

3F ^ j ua8&(
k

R̃k
j 1\eff

1/2211/4p3/2

3(
j 8

^ j 8ua8&Tj j 8(
k

R̃k
j 8(

q
R̃q

j G J ~36!

where the factorsR̃k
j are now written in terms of the

scaled classical variablesS̃k
j 5\effSk

j /2p\ and r̃ f
21/4Ak

j

5u21/2cos(uik/2)cos(ufk/2)m12u21/2 wherem12 is an element
0-8
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of the 232 stability matrix evaluated in the scaled semip
rabolic coordinate system~see Appendix D!.

IV. QUANTUM CALCULATIONS

We calculated a set of quantal eigenvalues and eigens
for the scaled molecule, corresponding to scaled energe
520.3 in theN50 channel ande520.8 in theN52 chan-
nels. These were then Fourier transformed and comp
with the equivalent spectral range in the semiclassical ca
lations.

The method employed is similar to that used previou
for unscaledcalculations of Rydberg H2 in a field by He
et al. @21#. The Schro¨dinger equation, in an outer-regionr 0
<r<` where short-ranged interactions with the core may
neglected, is

Ĥocn5H 2
1

2
¹22

1

r
1

1

8
g2r21BrN̂

21gLzJ cn5Encn .

~37!

In Ref. @21#, the solutions were expanded in the uncoup
basis u j &5uNlm&5Ylm( r̂)YNM2m(R̂) ~we drop the sub-
scripts if they are not necessary! with the radial part of the
wave function described in a basis of Sturmian functions

cn~r,R!5(
Nlm

Cn
Nlm

Snl
z

r
uNlm&, ~38!

and the outer-region HamiltonianĤo was then diagonalized
in the uncoupled basis with an additional surface term, i.

^cn8uĤo1L̂ucn&5Endnn8 . ~39!

The surface operator is known in terms of the molecu
basisuLJl&5ua&,

L̂52(
a

ua&d~r 2r 0!S ]

]r
2BaD ^au. ~40!

The first termd(r 2r 0)]/]r is a Bloch term which is neces
sary because the d2/dr 2 operator is not Hermitian over th
limited ranger 0<r ,`. TheBa @10# are logarithmic deriva-
tives given in terms of the MQDT wave functions, i.e
Ba(En ,r )5P8(En ,r )/P(En ,r ) where P(En ,r )5 f l a

(r )

2tan(pmLa
)gl a

(r ) with f and g denoting the regular and
irregular Coulomb functions, respectively. While we do n
have the exact logarithmic derivativesBa(En ,r ) one can ex-
ploit their relative insensitivity to energy. A value for th
logarithmic derivative at some reference energyBa(E
5E0 ,r ) is used to obtain good approximations to a few
genvalues with energies close byE.E0. The reference en
ergy is then adjusted and the next band of energies is
tained: and so forth, until the desired stretch of eigenval
and corresponding eigenvectors has been obtained. This
cedure, combined with the efficient Lanczos algorithm wh
computes only a few neighboring eigenvalues of the Ham
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tonian matrix at each reference energy, was used success
in Ref. @10# to study the spectra of nonhydrogenic atoms
fields.

This method was adapted here for the correspond
scaledmolecule in a magnetic field. With rescaled positio
coordinates~see Appendix A! the corresponding outer-regio
Schrödinger equation may be rearranged to take the form

H 2
1

r
1

1

8
r 2 sin2 u1eNm2eJ cn5

gn
2/3

2
$¹22L̂%cn .

~41!

The eNm are the scaled channel energies explained in S
III F above. This solution of the equation now represent
generalized eigenvalue problem with the magnetic fieldsgn

2/3

corresponding to a set of fixed scaled energies in every ch
nel andgn

1/3 plays the role of an effective Planck’s constan
In our calculations, we allowed ten channels (N50,2,4,6

with three Zeeman components in theN.0 channels!. How-
ever the contribution from theN54 andN56 states~which
were relatively few in number! is small. It was found that
adjusting the exponent on the Sturmian basis for each ch
nel, i.e., Snl

zNm(r ) was essential for an efficient calculatio
Since theN.0 states correspond to low-principal quantu
numbers, a much smaller basis could be used. So altho
we have ten channels, the Rydberg molecule calculations
volve matrices only two or three times larger than an equi
lent calculation for a Rydbergatom in an external magnetic
field.

V. RESULTS

A. Introductory remarks

We compare below the semiclassical calculations,
tained by following the theory detailed in Sec. III, to exa
quantum results obtained byR-matrix calculations as out
lined in Sec. IV. Previously@22#, we have found a reasonab
agreement between semiclassical and quantum calcula
in the case of H2 and its isotopomers~the figures shown in
@22# were for T2).

However, an appropriate comparison between semicla
cal and quantum calculations~avoiding the appearance o
purely quantum effects! requires the dynamics of the oute
electron to have attained the semiclassical limit in both ro
tional channels. As implied by Eqs.~11! and~32!, the effec-
tive quantum number of theN52 Rydberg series decrease
with an increasing rotational constantBr . So whenBr in-
creases, lower energies are obtained in theN52 channels for
a fixed value of the scaled energyeN50. We choseeN505
20.3 because recurrence spectra for hydrogen and no
drogenic Rydberg atoms for that particular valuee520.3
have been extensively investigated. However, in order
compare quantum and semiclassical results, the scaled q
tum calculations for a molecule need to be performed
higher values of the effective quantum number~for the same
value of the scaled energy in theN50 rotational channel!
than for an atom. This requires increasing basis sizes, C
time and computer resources. For H2, the value of the rota-
0-9
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MATZKIN, DANDO, AND MONTEIRO PHYSICAL REVIEW A 66, 013410 ~2002!
tional constant,Br.1.3331024 a.u. is particularly large, so
obtaining appropriate quantum calculations for a deta
comparison with the semiclassical calculations is proh
tively expensive.

To assess the validity of the semiclassical formalism v
à-vis exact quantum mechanics, we have chosen instea
investigate a model molecule with a smaller rotational c
stant, thereby reducing the gap between the energies o
electron associated with the different rotational channels.
compare below the results forM50, in a magnetic field
range g21/35602120 at constant scaled energieseN505
20.3 and eN52520.8 ~equivalent to choosingBr(gmid

21/3

590) about four times smaller than the rotational constan
T2). Note that from a qualitative standpoint, the classi
dynamics of the electron is not modified for larger choices
Br : indeed, this would only bring in lower values ofeN52,
and it is well-known that, even ate520.8, the classica
dynamics remains very close to its integrable limite→2`.

B. Recurrence spectra

Figure 2 displays the Fourier transform of the oscillato
part of the photoabsorption spectra for different choices
the quantum defectsmS andmP . As usual, the smooth back
ground term has been subtracted before taking the Fou
transform of the quantum spectra, whereas the semiclas
recurrence spectra were obtained by taking the Fourier tr
form of Eq. ~36!, thus including one core scattering. Equ
tion ~36! is of course proportional to the imaginary part
Eqs. ~23! and ~31!, which will prove more useful in the
analysis of the present results. Since the intensities are
defined to an overall constant, the quantum and semiclas
Fourier spectra were renormalized, usually by adjusting
amplitude of the peak at scaled actionS̃51.26 @labeled 1 in
Fig. 2~a!#. The main peaks in Fig. 2 are numbered. The cl
sical closed orbits that contribute to the semiclassical spe
are plotted in (r,z) coordinates in Fig. 6 in Appendix D
while Table I lists the scaled action and amplitude for t
first returns to the nucleus of each of the orbits and identi
the numbered peaks at which the orbit and its repetiti
contribute; the correspondence with the orbit labeling c
vention introduced in Ref.@29# is also given.

In the case of zero quantum defects@Fig 2~a!#, theT ma-
trix vanishes and there is no core scattering: the resul
spectrum is identical to the one obtained in the case of
hydrogen atom ate520.3, which has been extensively in
vestigated and discussed thoroughly~see@8# and references
therein!. The absence of any features related to the dynam
of the electron associated with the rotationally excited sta
of the core is evident. This is always the case whenmS

5mP : the sum overa in Eq. ~8! cancels forNj52, and thus
no electron associated with anN52 core is excited by the
laser field. Further, formS5mP nonzero, theT matrix, given
by Eq.~B6!, is diagonal and accordingly only the terms wi
Nj5Nj 850 survive in Eq.~31!. Put differently, there is no
rotational interaction, and thus only elastic core scatterin
expected. In this case, the molecule behaves in a quasiat
manner. This is seen in Fig. 2~b! for the quantum defects
mS5mP50.5; the additional peaks, not present in Fig. 2~a!,
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FIG. 2. Recurrence spectra for molecules with different qu
tum defects at scaled energieseN50520.3 ~predominantly chaotic
phase space! andeN52520.8 ~near integrable phase space!. Within
each panel,quantumcalculations are displayed on top andsemiclas-
sical calculations upside down. The main peaks are indicated w
numbers corresponding to the classical hydrogenic orbits give
Appendix D, or to a combination of those orbits via core scatteri
~a! mS50, mP50: only the hydrogenic orbits associated with th
core in stateN50 appear in the recurrence spectrum.~b! mS

50.5, mP50.5: new peaks associated with the core in stateN
50 are visible; these peaks are produced byelasticcore scattering.
~c! mS50.5, mP50: additional peaks are visible; these new pea
correspond~i! to the hydrogenic orbits associated with the core
stateN52 ~labeled a @m561# and b @m50#) and ~ii ! to peaks
produced byinelasticcore scattering, combining hydrogenic orbi
belonging to the different classical regimes.~d! mS50.22, mP5
20.06: these are the approximate values of the quantum defec
the ungeradel 51 complex of H2 at equilibrium internuclear dis-
tance; as in~c!, all types of orbits~hydrogenic orbits of the electron
associated with the core in statesN50 andN52 m50,61, elas-
tic and inelastic core-scattered orbits! are visible, but with different
relative amplitudes.
0-10
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TABLE I. Scaled action and amplitude of the classical closed orbits contributing to the semiclassical spectra ate520.3, ande5
20.8. The key A–U is used to identify the orbits with the trajectory plots displayed in Fig. 6. The peak label, corresponding to the n
used in Figs. 2 and 4, denotes the peaks in the spectra to which each of the orbits and their repetitions contribute. Note that th
entries for the amplitude and peak label for orbits B, C, and D correspond to the contributions from the first, second, and third re
respectively, of those orbits. The orbit label identifies the orbit, where possible, with the familiar naming scheme introduced in Re@29#.

e520.3
Key Action Amplitude Peak Label Orbit Label

A 0.9753 0.6325 R1

B 1.2636 0.2015, 0.1504, 0.1352 1, 5, 9 V1
1

C 1.2910 0.4894, 1.1183, 0.6054 2, 6, 10 V1

D 1.9541 0.6065, 0.4011 3, 10 R2
1

E 2.4444 0.1247 4 V2
1

F 2.5323 0.1125 5 V2
2*

G 3.0389 0.1179 7 R3
1

H 3.5862 0.0679 8 V3
1

I 3.7486 0.0555 V3
2

J 3.7917 0.1315 9
K 3.7941 0.1199 9
L 3.7944 0.1409 9
M 3.8150 0.0462
N 3.8723 0.0437 10 V3

4

O 4.1575 0.0526 11 R4
1

P 4.7171 0.0349 V4
1

Q 4.9036 0.0327
R 4.9743 0.0450
S 4.9753 0.0391
T 4.9856 0.0942
U 4.9893 0.0934

e520.8
Action Amplitude Peak Label Orbit Label

0.7487 12.7988 a R1

0.7906 11.9017 b V1
th
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correspond to a combination of orbits associated with
groundN50 core state~e.g., the peak atS̃53.21, which is
the combination of the hydrogenic orbits 1 atS̃51.26 and 3
at S̃51.95). These additional peaks were observed in
case of nonhydrogenic Rydberg atoms with a quantum de
m50.5 @13#. Note that the semiclassical calculation is in e
cellent agreement with the quantum results.

Figures 2~c! @mS50.5, mP50# and 2~d! @mS

50.22, mP520.06# display a far greater number of peak
characteristic of a more realistic molecular situation. First
all, peaks corresponding to contributions from the orbits
sociated with an excited core corresponding to a class
dynamics at scaled energyeN52520.8 are clearly visible.
The shortest of these orbits gives rise to the peak labeled
S̃50.75. It is an orbit perpendicular to the field axis (u i
5u f5p/2) and is associated with theN52, m561 sub-
manifold of the rotationally excited states, since the fac
R k

j given by Eq.~23! vanishes for this orbit whenm50.

Next to it, the peak b atS̃50.79, which appears with a fa
smaller amplitude, corresponds to an orbit parallel to
01341
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field (u i5u f50); it is associated with theN52, m50 core
state. The repetitions of these orbits~the first of which are at
S̃51.50 and 1.58, respectively! are clearly visible. The peak
corresponding to orbits associated with theN50 ground
state are also readily identified@e.g., by comparison with
Figs. 2~a! and 2~b!#; each of these involve both the hydro
genic and the core-scattered orbits. Furthermore, there
peaks appearing at a scaled action corresponding to the
of aneN50 orbit and aneN52 orbit. For example, the peak a
S̃52.01 arises from the combination of the ‘‘balloon’’V1

1

orbit ~peak 1! at scaled energyeNj 50520.3 and actionS̃k

51.26 with the perpendicularR1 orbit ~peak a! at scaled
energyeNj 850520.8, and actionS̃q50.75 ~and it is accord-
ingly labeled a11!. From a physical standpoint, the resultin
peak is produced by inelastic scattering: the electron al
an orbit k with the core in statej collides with the core,
exchanging energy and leaving the core in statej 8 along an
orbit q, as predicted by Eq.~31!.

Hence, the vast majority of the peaks appearing in
quantum recurrence spectra of Figs. 2~c! and 2~d! are ex-
0-11
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MATZKIN, DANDO, AND MONTEIRO PHYSICAL REVIEW A 66, 013410 ~2002!
plained semiclassically as resulting from primitive, elas
and inelastic core-scattered orbits. Furthermore, our se
classical theory is seen to yield a good quantitative ag
ment with the exact quantum calculations. Equation~23!
indicates how the relative amplitude of the peaks cor
sponding to the primitive orbits associated with the core
statesN50 andN52 depends on the short-range quantu
defects. Equation~31! shows the dependence of the elas
and inelastic peak heights on the value of the quantum
fects: indeed, the amplitude of a core-scattered peak dep
both on the classical properties of the orbits, contained in
factorsR, and on the purely quantal scattering matrix amp
tudesTj j 8 . Note also that different orbits or combination
orbits having the same total scaled action will interfere, a
ing constructively or destructively as a function of their re
tive phase, which contains terms having a classical an
quantum origin. All these effects combine to give the diffe
ent recurrence spectra displayed in Fig. 2.

C. Higher-order effects

Closed-orbit theory—as with any semiclassical for
alism—fails when the classical parameters become sing
for example, near bifurcations, where newly created or
are born, the stability matrix elementm12→0, and the am-
plitude of the corresponding orbit is overestimated@see Eqs.
~D1! and~D2!#. This is seen in Fig. 2 for the peak labeled
at S̃53.79 where the semiclassical amplitude is overe
mated, due to the existence of a period-three bifurcation
V1

1 at a slightly lower-scaled energye520.3184@25#. Note
that the semiclassical amplitude of a peak produced by c
scattering with a hydrogenic peak that is overestimated
likewise be overestimated@e.g., the peak a19 in Fig. 2~c!#.
Such failures of semiclassical formulas are generally
paired by resorting to uniform approximations, and this h
been investigated for closed-orbit theory by Main and Wu
ner @26#. Here we shall mention two other effects that app
at higher orders of\ and that account for some of the di
crepancy between our quantum and semiclassical result

1. Semiclassically forbidden orbits

From the formulas given in Sec. III, it is apparent th
some classically existing closed orbits that might have
large amplitude will nevertheless not contribute to the rec
rence spectrum. For instance, when the initially exci
waves propagate in the outer region or return to the in
region, Eq.~24! asserts that if the initial or final angle o
trajectoryk lies along a node of the wave function, thenRk
vanishes@becauseYlm(u ik) or Ylm(u f k) vanishes#. However,
we have observed the manifestation of such orbits in
quantum spectra. We have plotted in Fig. 3 quantum
semiclassical recurrence spectra withmS50.5, mP50.5,
showing the peak at scaled actionS̃51.95. The dotted line is
obtained by Fourier transforming the semiclassical spe
obtained with the ‘‘standard’’ formula Eq.~36!. However, we
know from classical calculations that ate520.3, S̃51.95
is the scaled action of the second return of the perpendic
orbit R1. Although R1 which has a scaled actionS̃50.975
01341
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has a small amplitude, its second and fourth repetitions h
a very large amplitude~see the suggestive Fig. 12 of@8#!; the
same type of mismatch is actually observed atS̃53.9, on the
fourth return of the perpendicular orbit. But since for th
perpendicular orbitu i5u f5p/2, Y10 vanishes and this orbi
does not contribute to the spectrum according to the ‘‘st
dard’’ semiclassical formula.

The contribution of orbits lying in the node of a wav
function was observed in the comparison of quantum a
semiclassical calculations for the hydrogen atom in a m
netic field @27#, and a quantitative formula was given; th
contribution of those orbits was found to be extremely sm
Such contributions also arise in the spectra of nonhydroge
atoms and the present results indicate that the resulting e
must be stronger than in hydrogen. The inclusion of th
forbidden orbits leads to an improved agreement with
quantum calculations~solid line in Fig. 3!. The reason was
already put forward by Shawet al. @27#: an orbit closed at
the core is not isolated, but has neighboring orbits~which are
not closed at the origin!. The contribution of these orbits
compared to the central one is usually negligible. Howev
here the central perpendicular orbit lies on a node of
initial outgoing wave function so the semiclassical wa
function can only be carried by the neighboring trajectori
At e520.3, a strong focusing effect is produced on the s
ond and fourth closures of the central orbit, bringing toget
near the core region all the neighboring trajectories. Hen
although the contribution of the neighboring orbits is su
pressed by a factor\ relative to the other contributions, it i
still sufficiently strong at\eff;1/90 so as to be clearly vis
ible in the recurrence spectra. The method used to obtain

FIG. 3. An enlarged view of the peak atS̃51.95 in the recur-
rence spectrum withmS50.5, mP50.5 @peak labeled 3 in Fig.
2~b!# is shown. Top: quantum result. Bottom: the dashed cu
gives the standard closed-orbit result, in which only theR2

1 orbit
contributes to the recurrence spectrum; the solid line includes
contribution of the perpendicular orbit lying on the node of t
wave function, which results in a constructive interference. T
solid line is in excellent agreement with the quantum calculatio
0-12
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CLOSED-ORBIT THEORY FOR MOLECULES IN FIELDS PHYSICAL REVIEW A66, 013410 ~2002!
solid lines in Fig. 3 is of course not specific to molecules a
will be described elsewhere@28#; although it is based on th
same physical idea, our derivation proceeds differently
that given in@27#, and yields different results. We have in
cluded the contribution of the on-node perpendicular orbi
the semiclassical calculations shown on Fig. 2.

2. Multiple core scattering

We have plotted in Fig. 4 the quantum and semiclass
recurrence spectra for the choice of quantum-defectsmS

50.5, mP520.5. Although such a combination is quite u
physical for typical molecules, the examination of this ca
is instructive. The graphic reveals two striking aspects: fi
the amplitude of the orbits associated with the core in s
N52 are much stronger than the amplitudes of the or
associated with the ground stateN50 of the core; second
there is a strong discrepancy in the amplitude of theN52
orbits, which increases with increasing scaled action.

In the cases presented in Figs. 2~c! and 2~d!, both elastic
and inelastic scattering was allowed, but the quantum tra
tion factor for orbits with the core inN52 states was stron
ger for inelastic scattering, and elastic scattering forN52
orbits ~including N52, m50 to N52, m561 scattering!
was weak @by quantum transition factor, we mea
the quantum scattering related part of Eq.~31!,
(a,a8^ j 8ua8&^au j &CaCa8e

ip(ma1ma8)Tj j 8 , which indeed fac-
tors the individual contributions of the classical orbits#. But
whenmS50.5, mP520.5, this quantum factor vanishes fo
EjÞEj 8 , thereby totally suppressinginelastic scattering.
Moreover,elasticscattering betweenN52, m50, 61 orbits
is enhanced, being about 60 times stronger than for the c
bination of quantum defects giving rise to Figs. 2~c! and
2~d!. Hence, we have a quasiatomic situation for the orb
associated with the core in statesN52, with strong elastic
quantum scattering and strong classical amplitudes, the l
characteristic of the quasiregular regime which prevails
e520.8.

We may thus expect multiple core scattering to have
important effect. This is seen in Fig. 5, where we have p
ted different recurrence spectra of theN52 orbits ate5

FIG. 4. Recurrence spectrum as in Fig. 2, but for the quan
defectsmS50.5, mP520.5. Top: quantum calculations. Bottom
semiclassical calculations. See text for discussion.
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20.8, each panel corresponding to an increase in the num
of core scatterings. It is seen that convergence is achie
after five iterations, after which the semiclassical recurre
spectrum agrees with the quantum results. In short, altho
multiple core scattering is a higher-order effect~since each
core-scattering process is suppressed by a factor\1/2 @\ for
the parallel orbit#!, it must be taken into account when th

m

FIG. 5. Semiclassical calculations with allowance for multip
core scattering ate520.8, corresponding to the orbits associat
with the core in stateN52 shown in Fig. 4. Each successive pan
adds an additional encounter with the core, and thus an additi
orbit which interferes constructively or destructively. The numb
of core scatters is indicated byp21: p51 shows the hydrogenic
recurrence spectrum, with the primitive orbits a,b, and their rep
tions.p52 shows the situation after one core-scattering process

for example, the peak atS̃51.5 results from the interference of th
second repetition of a with the core-scattered orbit a1a. Conver-

gence~for actionsS̃<5) is seen to be achieved after including fiv
core scatters. Agreement with the quantum results~Fig. 4, top! is
then obtained.
0-13
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MATZKIN, DANDO, AND MONTEIRO PHYSICAL REVIEW A 66, 013410 ~2002!
amplitudes are strong~which happens here with theN52
orbits when elastic scattering dominates!, or for higher ac-
tions of the recurrence spectra.

VI. DISCUSSION AND CONCLUSION

The theoretical developments presented in Sec. III ca
for the usual approximations involved in atomic closed-or
theory, which has been interpreted and compared succ
fully to experimental spectra in both the fixed magnetic fie
and constant scaled-energy domains. However, an app
mation made in Sec. III F, when we applied the ideas
scaled-energy spectroscopy to the molecule, is question
Indeed, to achieve the scaling we were led to artificia
modify the rotational molecular constant because a mole
lar system does not scale exactly. From a theoretical poin
view, the role of this approximation is to ease the extract
of the underlying classical dynamics. However, in an exp
mental situation, the magnetic field and the excitation f
quency of the laser would be simultaneously adjusted so
to keep the scaled energy of the most excited electron~i.e.,
that associated with the molecular core in its ground state
this caseN50) constant. When, say, the field intensityg is
increased while keepingeN50 constant, the electron assoc
ated with the excited core will encompass different dyna
cal regimes@and eN52 will vary according to Eq.~32!#. In
general,eN52 will be contained within the quasiregular re
gime, which brings in simple dynamics since there are o
two short-action closed orbits but the actions of those or
do change, since the periods get shorter ase→2`. There-
fore, the physical mechanism that we described above
which the spectral modulations are explained in terms
inelastic and elastic core scattering still holds~this mecha-
nism is independent of the scaling properties of the syste!.
But we do not expect a standard Fourier transform to g
recurrence spectra as clean as those presented in Fig. 2
other numerical methods~e.g., ag-dependent Fourier trans
form! will need to be employed if the classical dynami
associated with the excited core states is to be extracted

Further refinements can be included in the semiclass
theory. On the one hand, methods to correct the breakd
of the semiclassical approximation~divergences at bifurca
tions, ‘‘ghost’’ orbits! are well known, and these are not sp
cific to the molecular extension—in fact, they only conce
the hydrogenic classical dynamics, although in a molecu
spectrum each mismatch arising from such a breakdo
would be propagated through core scattering. On the o
hand, the inclusion of further molecular perturbations, su
as the provision for vibrational and electronic interactio
can be included in the semiclassical theory. This is natur
included within the MQDT formalism by extending th
frame transformation from a rotational to a rovibrational on
and replacing the short-range quantum defectsmS ,mP by a
nondiagonal matrix depending on the internuclear dista
@15#. In this situation, a great number of Rydberg series
teract, each built on a different rotational and vibration
state of the core. The spectral modulations will then ess
tially result from inelastic scattering between the outer el
tron and the molecular core.
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In conclusion, we have presented the theoretical fram
work for a closed-orbit treatment of molecules in fields. T
main extension was seen to be the combination of multich
nel quantum scattering with hydrogenic closed orbits.
have also compared semiclassical and largeR-matrix quan-
tum calculations for a model molecule in a static magne
field. The molecular core plays the role of an effective tw
level scatterer: the ground state of the core was associ
with classical trajectories of the electron in the chaotic
gime, whereas the excited state of the core was assoc
with trajectories in the quasiregular regime. Hence, the c
is intrinsically a quantum object, on which the semiclassi
waves diffract, either elastically or inelastically. The agre
ment between semiclassical and quantum results were
to be good, and the aspect of the recurrence spectra cruc
depended on the value of the quantum defects.
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APPENDIX A: HAMILTONIANS AND SCALED
VARIABLES

In this appendix, we give the Hamiltonians for the hydr
gen atom in a magnetic field and show how it can be sca
to remove the separate dependence on electron energy
field strength. Classically, the dynamics of a highly excit
hydrogen atom~in a state withm50) in the presence of an
external static magnetic field aligned along thez axis is de-
scribed by a single-particle, nonrelativistic Hamiltonian. E
pressed in atomic units and cylindrical coordinates (r,f,z),
this is

H5
1

2
~pr

21pz
2!2

1

~r21z2!1/2
1

1

8
g2r2, ~A1!

whereg is the magnetic field strength.
The classical motion of Hamiltonian~A1! exhibits an im-

portant scaling property. If we transform variables accord
to

r̃5g2/3r, p̃5g21/3p, t̃ 5gt, ~A2!

we obtain thescaledHamiltonian

H̃5
1

2
~ p̃r

21 p̃z
2!2

1

~ r̃21 z̃2!1/2
1

1

8
r̃25e, ~A3!

which is simply the original Hamiltonian of Eq.~A1! multi-
plied by g22/3. In terms of the scaled variables, the classi
dynamics no longer have a separate dependence on th
ergy of the electronE, and field strength but is governed b
the single parameter, thescaled energye5Eg22/3.

In order to solve numerically the equations of motion ge
erated by Hamiltonian~A3!, it is convenient to make a regu
0-14
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CLOSED-ORBIT THEORY FOR MOLECULES IN FIELDS PHYSICAL REVIEW A66, 013410 ~2002!
larizing transformation that removes the Coulomb singu
ity. For the case considered here, wherem50, this can be
achieved by transforming to semiparabolic coordinat
(u,v), where

u25 r̃ 1 z̃, v25 r̃ 2 z̃, with r̃ 5~ r̃21 z̃2!1/2, ~A4!

and with conjugate momenta,pu5du/dt, pv5dv/dt, de-
fined with respect to a rescaled time,t, given by

dt

dt
5

1

2r̃ ~ t !
5

1

~u21v2!
. ~A5!

On transforming to semiparabolic coordinates our fi
Hamiltonian becomes

H5
1

2
~pu

21pv
2!2e~u21v2!1

1

8
u2v2~u21v2!22[0.

~A6!

Strictly, the Hamiltonian of Eq.~A6! is only valid for m
50. However, formÞ0, the potential-energy surface diffe
from that form50 only close to thez axis where a centrifu-
gal barrier now exists. Away from this small region near t
z axis, the classical dynamics for smallmÞ0 differs only
slightly from that atm50 and hence we find it convenient t
use them50 values in our calculations. The phase chan
arising in the semiclassical wave function because them
Þ0 orbits no longer cross thez axis but are instead reflecte
at the centrifugal barrier is readily incorporated into t
Maslov index.

The scaling transformation, Eq.~A2!, has an important
consequence for the quantum system. Solving the Sc¨-
dinger equation corresponding to Hamiltonian~A3! at fixed
scaled energy leads to a set of eigenvalues$g i

2/3% correspond-
ing to a set of energies$Ei5eg i

2/3%. Thus, the field strength
is not entirely eliminated from the quantum problem. No
each Ei corresponds to a different value of an effecti
Planck’s constant, the value of which is obtained by cons
ering the position-momentum uncertainty relation in t
scaled variables, e.g.,@ p̃r ,r̃ #5\eff5g1/3. However, all of
the eigenvalues now correspond to asingleclassical regime
and the semiclassical limit,\eff→0, can be studied by de
creasing the field strength while keepinge constant.

We also define the classicalscaled actionof the kth
closed orbit, which enters into the phase of the semiclass
wave function, as

S̃k5
1

2p R p̃•dq̃5
\eff

2p
Sk , ~A7!

where we introduced the arbitrary 2p factor in keeping with
the usual convention.

APPENDIX B: BASICS OF MQDT

Multichannel quantum-defect theory@14,15# partitions the
system into the outer electron~of radial coordinater and
orbital momentuml ) and the residual ionic core. A standing
01341
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wave function then takes the form

cS~r !5(
a

ua&(
a8

ca8@daa8 f l a
~r !2tan~pmaa8!gl a

~r !#,

~B1!

where f l a
(gl a

) is a standing-wave Coulomb function reg

lar ~irregular! at the origin andua& is a compound notation
accounting for the core state as well as the orbital part of
outer electron with the relevant angular momenta couplin
a is thus a set of ‘‘good’’ quantum numbers when the ou
electron is coupled to the core, and tanpmaa8 are the ele-
ments of the coupled-frame reaction matrixK ~in the present
case,K is diagonal with elements tanpma); the phase shifts
m induced by the short-range interaction are known
‘‘quantum defects.’’ Theca are expansion coefficients. How
ever when the electron roams far from the core, an expan
in the uncoupled basisj is appropriate,

cS~r !5(
j

u j &(
j 8

cj 8@d j j 8 f l j
~r !2K j j 8gl j

~r !#. ~B2!

The two coupling schemes are related by a unitary fra
transformation with elementŝj ua&.

Equations~B1! and ~B2! may also be obtained as a pa
ticular case of the Lippmann-Schwinger equations@16#. It
then follows that the coupled solution with outgoing-wa
boundary conditions is obtained as

c~r !5(
a

ua&ca@ f l a
~r !1~2i !21~e2ipma21!gl a

1~r !#,

~B3!

where

gl a
65~gl a

6 i f l a
! ~B4!

are outgoing and incoming Coulomb waves and we h
assumed a diagonal scattering matrix. In the uncoupled b
we have

c~r !5(
j

u j &(
j 8

cj 8@d j j 8 f l j
~r !1Tj j 8gl j

1~r !#, ~B5!

where theT matrix is obtained from the quantum defects
applying the frame transformation,

Tj j 85(
a

^ j ua&
e2ipma21

2i
^au j 8&. ~B6!

The expansion coefficientscj 8 are related to the expansio
coefficients in the coupled basisca by

ca5(
j

^au j &cj ; ~B7!

in the field-free case, the expansion coefficients are obta
by using the boundary conditions at infinity; in the presen
of an external field, boundary conditions in a region whe
the external fields are weak will be used.
0-15
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FIG. 6. Shapes of the classical closed orbits of the hydrogen atom in a magnetic field at a scaled energy ofe520.3. The trajectories are
plotted in therz plane and the dashed line denotes the energy surface. Only those orbits that contribute to the semiclassical r

spectra for scaled actionS̃<5 are shown. The labels A–U correspond to the key used to identify the orbits in Table I.
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APPENDIX C: GREEN’S FUNCTION
IN THE INNER ZONE

The molecular outgoing Green’s functionG in the inner
zone is obtained by projecting the resolvent equationG
5G01G0TG0, whereG0 is the Coulomb~long-range! mo-
lecular Green’s function.G0 can be shown to take the form
@16#

G0~r ,r 8!5(
j

u j &^ j u f l j
~r !gl j

1~r 8!@2W21#, ~C1!

whereW52(8p)21 is the Wronskian off andg1 and we
assumer ,r 8. Thus,

G(r ,r 8)5216p(
j

u j &gl j

1(r 8)H(
j 8

[d j j 8 f l j 8
(r )

1Tj j 8gl j 8

1 (r )] ^ j 8uJ . ~C2!

We also need to express the term between the curly brac
the coupled frame. Using Eq.~B6! along with the unitarity of
the frame transformation yields

G~r ,r 8!5216p(
j

u j &gl j

1~r 8!(
a

eipma^ j ua&

3@ f l a
~r !cospma1gl a

~r !sinpma#^au. ~C3!

APPENDIX D: CLASSICAL ORBITS
The properties of the classical orbits closed at the ori

for an electron subjected to a Coulomb and a magnetic fi
are well known@6,8,25#. They are organized into ‘‘vibrators’
V, along thez axis, ‘‘rotators’’ R, in the axial plane, and
01341
in

n
ld

exoticsX. This terminology is given in Ref.@29#. Figure 6
shows all the closed orbits contributing to the semiclass
spectra fore520.3 up to a scaled action ofS̃55. Table I
gives the scaled action, Eq.~A7!, and classical amplitude
Eqs. ~D1! and ~D2! with \eff51 for the first return to the
nucleus of each of the closed orbits. The key A–U is used
identify each of the orbits with their shape as shown in F
6 while the orbit label refers to the nomenclature of Ref.@29#
where available. The peak label gives the numbers, co
sponding to the labeled peaks in Figs. 2 and 4, at which
orbits and their repetitions contribute to the semiclass
spectrum. Note that, for orbits B, C, and D, we also give
amplitude at repeated returns to the nucleus together with
label of the corresponding peak to which they contribute. F
completeness, we also include the data for the two class
orbits that contribute to the spectrum in the regular class
regime ate520.8.

The classical amplitude of the orbitsAk
j in the two-

dimensional axial plane is determined from the evaluation
the 232 stability matrix in semiparabolic coordinates. W
have@12#

A k
n5\eff

1/2usinu f k
n sinu i

ku1/2H U21/2cos
u ik

2
cos

u f k
n

2
m12U21/2J

~u ikÞ0,p!, ~D1!

A k
n5\eff$u21/2m12u21% ~u ik50,p!, ~D2!

wherem12 is an element of the stability matrix for thenth
return to the nucleus of thekth closed orbit.A k

n is the result-
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ing effective amplitude; the term between curly braces
r̃ f

21/4Ak
j .

As is apparent from Eq.~D2!, the treatment of the orbi
parallel to the field (u ik50,p) is special in many ways. The
stationary phase derivation performed in Eqs.~18!–~20! is
os

.

ys
.

r,

01341
snot valid in this case, resulting in a different\ dependence,
but there are other differences as well: each term
tween brackets in Eq.~31! needs to be multiplied by
heff

1/2221/4p21/2e2 ip/2 when the orbitk or q is the parallel
orbit. This change must also be incorporated in Eq.~36!.
d

ys.
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