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Closed-orbit theory for molecules in fields
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Closed-orbit theory was initially developed as a qualitative and quantitative tool to interpret the dynamics of
excited hydrogen in static external fields: the modulations in the photoabsorption spectrum were explained in
terms of classical orbits closed at the nucleus. We consider the closed-orbit theory formalism appropriate for
molecules in fields. The theoretical extensions are described, and semiclassical calculations based on this
formalism are undertaken and compared to quanRimatrix calculations for model molecules in a static
magnetic field. We find that the spectral modulations can be analyzed simply in terms of the scattering of the
excited electron on the molecular core. In addition to elastic scattering, modulations produced by inelastic
scattering are essential to account for the photoabsorption spectrum. Through this process, an electron along a
closed orbit in the classically chaotic regime exchanges energy with the core and comes out along an orbit in
the near integrable regime. The relative importance of elastic and inelastic scattering depends on the molecular
quantum defects.
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[. INTRODUCTION Closed-orbit theory was also extended to treat the case of

The hydrogen atom in a magnetic field is a well-knownnonhydrogenic Rydberg atoms. In addition to the strongly
[1] paradigm of “quantum chaos"—the study of quantum back-focused Coulomb scattered waves, which lead to rep-
systems possessing a classically chaotic counterpart. Indeegtjtions of the closed orbits in the hydrogenic case, the phase
a highly excited Rydberg electron in a static magnetic fieldshifts induced by the core on the electron’s wave function—
senses both the spherical Coulomb and the cylindrical magraditionally known as quantum defects—qgive rise to core-
netic fields; classically, the system is nonseparable, and thecattered waves. Gao and Deldd incorporated the quan-
trajectories are chaotic. Quantum mechanically, the photoalium defects in the closed-orbit formalism but concluded that,
sorption spectrum displays complex structures. Ever sincéor the system under consideration, the effect of the core-
the quasi-Landau oscillations in the photoabsorption specscattered waves was insignificant and could be omitted from
trum of barium were associated with the classical motion othe final formulas. However, the first fully quantum-
the electron in the plane perpendicular to the field &2j8], mechanical calculations for nonhydrogenic atoms in a mag-
the large-scale structures of such spectra have been assogetic field at fixed scaled energi§8] showed strong reso-
ated with classical orbits. This correspondence was highrance structures in the recurrence spectra, which seemingly
lighted further by taking advantage of scaling properties poseould not be explained by closed orbits of the hydrogenic
sessed by those systems. The external fields then play thpeoblem, together with a reduction in the recurrence strength
role of an effective Planck constant, and the quantum systerf the contributions from the long-period orbits. These ob-
can be studied, theoretically or experimentally, at some fixedervations were confirmed subsequently by experimental
dynamical classical regime while effectively changing themeasurements of diamagnetic helium atoms and the addi-
Planck constant. tional peaks identified as being due dcombinationsof hy-

A major advance was achieved with the advent of closeddrogenic closed orbits that arise from scattering with the core
orbit theory, first introduced for the hydrogen atom by Bogo-[10]. Similar structures were also observed in the experimen-
molnyi [4] and by Du and Delo$5], and developed to a tal spectra of lithium atoms in a static electric fi¢ltL].
large extent by Maet al. [6], Gao and Delo§7], and Main In an attempt to provide a semiclassical description of
et al.[8]. Closed-orhit theory consists of a fully quantitative these additional peaks, two differing approaches were pro-
approach in which the large-scale structures of the photoatposed. One approag¢h?], treated the core-Rydberg electron
sorption spectra are explained in terms of classical trajectanteractions by employing a model potential which led to the
ries closed at the nucleus, i.e., those that leave from andreation of new orbits. This method involved the calculation
return to the core. Each orbit produces on its return an oscilef several thousand orbitsompared to a couple of dozen for
lation in the photoabsorption cross section; the Fourier tranghe hydrogen atom at the same scaled eneagg gave only
form of the spectrum, known as threcurrence spectrum a global qualitative agreement.
therefore exhibits sharp peaks at the pefiodscaled action, An alternative approach13], which allowed for the
if the scaling properties are useaf the orbits. Experimental breakdown of classical path methods at the core, was more
and theoretical recurrence spectra for hydrogen in a magnetsuccessful. Here, the core-scattered modulations were de-
field were found to be in very good agreem§8it The same  scribed as resulting from successive diffractive encounters of
closed-orbit formalism can also be applied to study the abthe Rydberg electron with the core: the wave function fol-
sorption spectrum in a strong electric field: only the properdows the well-knowrhydrogenicclassical orbits in the region
ties of the classical trajectorié®hich are not chaotic in this where the Coulomb and the external fields compeie
case need of course to be modified. “outer region”), but near the core, where the external fields
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are negligible(the “inner region”), the wave function is de- with the basic equations. Section Il presents multichannel
scribed quantum mechanically. Good quantitative agreememnolecular closed-orbit theory. We first give an overview of
between quantum calculations and closed-orbit theory for athe physics of such systems, and then go into a detailed
atom with a quantum defegt; _;=0.5 was obtained both for presentation of the formalism. Section IV describes the
the diamagnetic and Stark photoabsorption spectra. method employed to perform quantum calculations. Our re-
In the present paper, we follow the latter approach to exSults are presented in Sec. V: we compare quantum and semi-
tend closed-orbit theory to the more general case of mumg[assmal calculations for various “model” molecules having
channel core scattering. Indeed, up to now, only Smg|e_dn°ferent quantum defects. It W|I_I be seen that the appearance
channel scattering has been assumed. However, a typic3f the recurrence spectra are indeed governed by the core-
Rydberg atom does experience multichannel scattering, ifcattering process. The inclusion of some higher-order ef-
which both the quantum state of the core and of the RydberffCts (in 72) is also discussed. Finally, in Sec. VI, we present
electron may change during the collision. This is also the?U" conclusions. Atomic units are used_ throughout, with the
case for even the simplest molecules, which present multiplé factors reestablished where appropriate.
Rydberg series converging to different ionization thresholds.

General Rydberg atoms and molecules in the field-free case Il. CLOSED-ORBIT THEORY
are described by a formalism known as multichannel
quantum-defect theoryMQDT) [14,15. Here, our multi- In atomic closed-orbit theory, two different regions of

channel extension will be more specifically focused to treaspace are identified: a region near the care’(o; ro~50
photoabsorption for molecules in a strong magnetic fieldBohr radi) where the external field can be neglected but a
The same method may be used for atdiimg changing the quantum description is required, and an outer region (
quantum numbers and the frame transformation elements >ro) Where a semiclassical description is feasible. When the
for other choices of external fieldby changing the param- atom absorbs a photon, the excited electron leaves the core
eters of the classical trajectorjeThe heart of our approach region in a near zero-energy outgoing Coulomb wave at an
relies on connecting the Green’s functions in the inner andnitial angle ¢;, to the field direction. For>r,, the wave
outer regions. In the inner region, the Green’s function ispropagates semiclassically, following classical trajectories.
extracted from the MQDT wave functions by following the Eventually, these trajectories are turned back by the com-
method described ifil6]; propagation in the outer region is bined action of the Coulomb potential and the external field.
achieved as in the usual form of closed-orbit theory by fol-Some of the trajectories return to the vicinity of the core
lowing the formalism due to Maslov and Fedorilk7]. Re-  region at an angle of incidencé, to the field direction.
cently, an alternative approach merging MQDT and closedHere again a quantum description is needed and a scattering
orbit theory with the aim of treating multichannel core wave function can be constructed. The outgoing part of the
scattering was presentéig]; rather than directly matching scattered wave is comprised of two component€oalomb
Green’s functions, this approach is based on a semiclassicatattered wave and, for nonhydrogenic atoawse-scattered
approximation to the long-range scattering matrix, represenwaves. The Coulomb scattered waves are strongly back fo-
ing the phase accumulated in the outer region and obtaineelised and result in repeated traversals of the trajectory. The
from the semiclassical Green’s function. Only model calcu-core-scattered waves redistribute amplitude into other closed
lations were presented [18]. orbits.

Rydberg molecules in a strong magnetic field have re- The result is a formula for the average oscillator-strength
ceived little attention, especially if compared to the countlesglistributionf, that consists of a slowly varying background
experimental and theoretical studies performed on atoms. Irierm ., together with an oscillatory paft, involving a
deed, even the linear Zeeman effect, which is trivial for at-sum of contributions over all closed orbksof the system,
oms, induces mixing between different rotational core states.

This was first seen in calculations for the photoabsorption 2(E—Ey)

cross section from the ground state of HL9]. It was also f(E)=— ———1m>, N(DWo|¥ ), 1)
experimentally observed in NO, and a detailed theoretical 7 K

account using MQDT of the uncoupling of the electron from

the core for moderately low-Rydberg states was gi\@8].  which arises from the interference between the returning
However, for higher-Rydberg states, the diamagnetic interacvave scattering at the core, and the original outgoing wave.
tion dominates, which ruins any attempt to explain the dy-Here, E—E,) is the energy of the electron with respect to
namics on a MQDT basis. AlthougR-matrix calculations the zero-field ionization limit of the atorf,, the wave func-
have been undertaken successfully for[B1], a dynamical tion of the initial state from which the laser excitation occurs
interpretation of the photoabsorption spectra seems only poss denoted byV,, D is the component of the dipole opera-
sible by resorting to semiclassical analysis. This has beetor relevant for the polarization of the exciting laser, alhg,
achieved only recently and the results were reportd@ i is the wave function of the returning wave scattered at the
the spectral modulations were interpreted in terms of elasticore.

and inelastic diffractive scattering of the Rydberg electron on The coefficientsV,, are calculated by matching the semi-
the molecular core. classical wave returning to the core with the incoming part of

The present paper is organized as follows. In Sec. I, wahe scattered wave functiol;,(rq,65) at the boundary
give a brief summary oftomicclosed-orbit theory, together =r,. The resulting matching equation is
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Do(rg, i) A ST PI= N W (r, 050, 2) To incorporate the effect of the core-scattered waves in
the closed-orbit sum, the extra outgoing waves are added to

. I . . the starting condition for constructing the semiclassical wave
where®y(rq, 6;) is the initial outgoing wave function at function [13]

=r, needed to construct the semiclassical wave func&n.
is the classical action of trajectoky and ¢, is an additional

phase term. The effective amplitudk is related to the clas- Do(ro, i) = Yol To. i) + 2 Ng¥dodT0.01).  (5)
sical amplitude which, in turn, depends upon the stability and d
topology of the orbit. Substituting this expression fab, into Eq. (2) gives the

following equation for the coefficientsy:
A. Hydrogen

In the case of hydrogen, the initial outgoing Coulomb NMWind(To,811) =| Youl T 0 bik)
wave ¥,(ro,0), at the boundary between the semiclassical
and quantum region is used as a starting condition for con- o
structing the semiclassical wave +q§; No¥eod 0,0 En: ARe' 540,

Do(ro,bik) = Youl o, i) - 3 (6)

The first term on the right-hand side of E&) accounts for

. N y the oscillation due to the hydrogenic orkjtthe second term
closed orbit thus leads to an oscillation with frequeiy accounts for all combination orbits for which the electron is

an(_j amplitudeAk in the absorption spectrum. Coulomb _scat- finally core scattered from an orhit into the orbitk. The
tering is focused strongly backward and may result in re 1 armonics ok andq are labeled by andp, respectively.
peated traversals of the orbit; these are connected to harmon- The resulting matching equatiéga. (6)] ’now has\/ val-

ics in the oscillator strength distribution. ues on both sides and this is most conveniently solved by an

The Hamiltonian of the hydrogen atom in external ﬁeldsiterative procedure. We begin by sett'u\g on the right-hand
can be scaled exactly. The scaling results in removing thgide of Eq.(5) to .zero and obtain a first approximation
separate dependence of the Hamiltonian on the electron e A this: is equivalent to the hvdrogenic closed-orbit
ergy and the field intensity by a dependence on a sole param- * K’ q yarog

Y . o result. In each successive step extra terms of the form,
eter, the scaled energy This is shown in Appendix A in the i(Sg+---+Sy) :
U Ay - At , are added to the previous result. The
case of an external magnetic field. q

resulting recurrence spectrum thus shows two effects not

seen in the hydrogenic case. First, the core casts a “shadow”

B. Nonhydrogenic atoms in the backward direction changing the recurrence strength of

In an extension of closed-orbit theory, Gao and Délds subsequept returns to the core of” each trajectory. Second,

incorporated the effects of the ionic core in the closed—orbitthere are *combination recurrences’ due to the electron trav-

sum pAs well as considering the quantum defects that de(gling along one closed orbit and then being scattered by the

scribé the nonhvdrogenic naﬂure o?the core. Gao and Delolonic core on to another closed orbit. In successive steps of
. yarog . and De0%e iterative process combinations of more and more orbits

also included the effects of the nonhydrogenic radial dipole. ~ .

; . . o 2 ) are included.

integrals and spin-orbit coupling in the initial state; these

guantities all affect the angular distribution of the outgoing

waves. However, the effect of the nonhydrogenic core- Iil. CLOSED-ORBIT THEORY EXTENDED TO

scattered waves was found to be negligible for the system MOLECULES IN FIELDS

considered and hence omitted in the final calculation. We give in this section the developments needed to un-
In order to reproduce successfully resonance structuregerstand molecules in fields within the framework of closed-
observed in the Fourier transformed spe¢th@ “recurrence  pjt theory. From a formal point of view, the main differ-
spectra) of nonhydrogenic atoms in static magnett0]  ence with the results reviewed in Sec. Il concerns the
and electrid11] fields, Dandcet al. [13] included the core-  {reatment of the core region. Indeed, the dynamics of a Ry-
;cattered waves consist'ently within the closed-orbit formal-dberg electron along closed orbits in the outer region is iden-
ism. For a nonhydrogenic atom, the scattered quantum wavga| here to the atomic case, but the core scattering which
function consists not only of an incoming part returning togoverns the way the orbits are combined is intrinsically a
the core and a Coulomb part scattered back in the directiof,tichannel process, which gives rise to effects, such as
of the incoming trajectory but also of an additional outgoing,ine|astic scattering. Hence, the inner zone treatment will be
core-scattered wave based on molecular multichannel quantum-defect theory
_ (MQDT), which describes Rydberg molecules in field-free
Ve, 0) =Wine(r, 0) + ¥ couom 1, 0) + Weord 1, 60)- (4 G 2 ions "in the developme)rqts th%t follow below, we shall
make some simplifying assumptions; in particular, we will
The effect of the core-scattered waves is to redistribute amdisregard electronic interactions and vibrational couplings,
plitude into all other closed orbits. which can be very important in many molecules or specific

The calculatedVj, are then proportional tol &'k, The kth
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symmetries thereof, as well as spin. We expect our model to
be adequate for a simple diatomic molecule such as/ken
photoabsorption takes place from the ground state td the
=1 ungerade complex. We detail below the extension of
closed-orbit theory for such a model. We have tried to follow
the standard notation of quantum-defect the@se Appen-

dix B) to describe the phenomena in the inner zone. How-
ever, to allow for a direct comparison with earlier results in
closed-orbit theory, we have chosen to keep to the conven-
tions (e.g., for normalizationusually employed in closed-
orbit related works, originally introduced {5]. c

A. General picture
1. Dynamical couplings

Generally speaking, MQDT is based on the separation of
the long-range Coulomb field from the short-range effects
induced by the cordsee Appendix B These short-range
effects produce phase shifts in the wave function of the outer
electron. Furthermore, the dynamics of a molecular Rydberg FIG. 1. Simplified picture of the photoabsorption process giving

electron in the field-free situation falls in one of two situa- rise to recurrence spectra. Each numbered step is described in the

tions. Near the core, the electron is strongly coupled to th(?ext. Paneh shows the photoexcitation proceds; the wave func-

molecular_ axis and_ IS be_‘st described in the molec(Barn- tion of the excited electron propagates quantum mechanically in the
Oppenheimer b.aS|S: W"[h_ gpod quantum nur_nbel1$z> inner zone(2); and semiclassically in the outer zo(®; the radius
=|A,J.l.); A is the projection of the electronic angular of the outer circle is at about 50 a.u., and the waves travel outward
momentum on the molecular axisis the orbital momentum 3 few thousand atomic units before being turned back by the mag-
of the outer electron, quantized along this axis, drglves  netic field. Paneb shows the waves returning from the outer zone
the total angular momentum. Far from the cor) along classical orbit§4), and entering the inner zon®), where
=|N;l;)™M is an appropriate basis in the field-free situationthey overlap with the initial waves to produce modulations in the
(J is conservedM is its projection on a space-fixed axis, and photoabsorption spectrum. Part of the waves are backscattered by
N is the angular momentum of the freely rotating gout the Coulomb field6). Panelc gives a schematic view of the recou-

in the presence of a magnetic field, only the axial symmetnpling when the electron returns into the inner zone: as the electron
remains, i.e.J is not conserved but its projectidvl on the  approaches th(_a core, t_he wave function, previously desc_ribe_d in the
field axis is; ther{j)=|N;l;m;,)™ is an appropriate basi {s ~ uncoupled basigN;m;) is projected onto the coupled basis), in

now quantized in the laboratory frame along the axis of theVhich the projection of the angular momentum on the internuclear
magnetic field with magnetic quantum numlmr, andM axis is well defined. The radius of the outer circle is at about 10 a.u.

_ MN-+mj)- Hence, far from the core the electron precessegh? core-scattering process is best c_iescrlbed_ in this basis, after
j which the coupled waves are recombined to give newly outgoing

around the field axis. The uncoupling of the electron dynamy, ayes(7) described again in the uncoupled basis, where the rota-
ics from the core may thus be seen as proceeding in tWgna| state of the ionic core is well defined. Padeshows the
steps, from thga) basis to|i) then fromli) to [j) [20], or  outgoing waves traveling in the outer regiGh and returning to the
alternatively by obtaining a single orthogonal transformationcore (8), producing additional modulations in the photoabsorption
from the|a) basis to thdj) one, as originally proposed by spectrum.

Monteiro and Taylof19] where the transformation elements

(i| ) are given explicitly. In what follows, we shall omit the enters the outer region; the wave function is then propagated
explicit dependence of the uncoupled basis and transforma: gron, propag

tion elements oM (an independent calculation must be per- along classmal_trajeqtoneed,) some tra_Je(_:t_orles return to _the
core: those trajectories define the primitive or geometric or-
formed for each value df1).

bits; (5) the Rydberg electron is then again coupled to the
molecular core: the returning waves interfere with the ini-
tially excited waves to produce modulations in the photoab-
As in the atomic case, we divide space intoianer re-  sorption spectra(6) the Coulomb field backscatters the re-
gion around the core, where the magnetic field is negligibldurning waves, resulting in repetitions of the primitive orbits;
compared to the Coulomb interaction, and @urter region  (7) the core scatters the previously returning waves; this
where the quadratic Zeeman and Coulomb interactions conguantum multichannel process mixes these waves and gives
pete. The global picture can be staged in eight different stepgse to newly outgoing waves which propagate semiclassi-
(see Fig. I (1) The molecule in its ground state, compactly cally in the outer region; ané8) these waves return once
localized around the core, is excited by a lag@j;the ex- more to the core producing additional modulations in the
cited electron uncouples from the core. The outgoing wavephotoabsorption spectra. The same process is again repeated
are propagated quantum mechanically u(Bjl the electron but each core-scattering event reduces the amplitude of the

2. Physical picture
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modulations and, in the semiclassical, limit additional corewhereE® is the energy of the outer electron aBgthe core
scattering becomes negligible. rotational constant, there are two effective dynamical re-
gimes for the outer electron, each associated with a different
rotational state of the cor&|=0 andN=2 (the dependence

o o on m through the Zeeman term for tié=2 levels is very
The molecule is initially in its ground state, compactly small

localized in the core region where the magnetic field is neg-
ligible. Thus, the ground state is a field-free stptg) that
we assume to have the quantum numbkrsO (hence, &
statg, J=0 andl =0 for the “outer” electron, so that in the
molecular framegcoupled basis

B. Initial excitation and quantum propagation

C. Semiclassical propagation

When the outgoing waves enter the outer zone, where the
magnetic field cannot be neglected, we resort to semi-
classical propagatiopl7]: the wave function is calculated
from the properties of the classical trajectories and from the
knowledge of the wave function on an initial surface. As in
psual closed-orbit theor{s,7], let (r;,6,) define an initial
surface. Equatioi(8) reads, by explicitly writing the indices

|1h0)=|A=0J=0)[I=0N=0)F_o(r), (@)
whereF,_(r) is the unknown radial function of the “outer”
electron. For definiteness, take the laser to be linearly pola

ized along the(space-fixell magnetic field axiz and letD
be the dipole operator in the space-fixed frame. The photo-
excitation takes place in the region near the core and is best
described in the molecular frame. As in the atomic case, the
resulting outgoing wave is given b$D| ) [5] whereG is

the quantum-mechanical outgoing Green’s function, de-

scribed for the molecular case in Appendix C. Sihgg) is

a coupled basigBorn-Oppenheimgr function, the form

Youl 11,6 = > |N;m;)
ijj

X

_ 952 T(r: )
2 wlj;m” o' (1)) Y1 m,(6)

given in Eq.(C3) is the appropriate choice. The outgoing
wave is thus obtained as

Voul1)==2%1 2 [1}gi[ (N2 €™ a(j|a)D,  (8)
with

D,= J 23’2r'3dr’[(f,a(r’)0037r,ua+ g (r')sinmu,)

X{a|]D[|A=03=0)|I=0N=0)F _o(r")]. 9

X D, el |a>Da}, (12

where the notatiolY, n (6;), standing forY, n, (¢;,0) will be
used throughout. An approximate analytic solution may be
obtained by using the zero-energy approximationgﬁ(r),

from whichg; (r) —iH§}), ,(VBr)/ VBT, whereH§!). , s the
Hankel function of the first kind, and the asymptotic approxi-
mation for large x of the Hankel functionHSP, ;(x)

— (mx/2)" 12 exdi(x—ljm—3w/4)]. We then write tjhe mo-
lecular wave function in the outer zone as

The dipole transition will leave the system in states with
J,=1, I,=1andA,=0 (2 state or |A,|=1 (II state (we
have assumed\ =0, SO Agect=A). ExpressingD in
terms of molecule fixed components through the direction
cosine matrices[23] and evaluating the rotational parts whereyNiMi(r,6) is the semiclassical wave function associ-

w(r,0)= 2 [N;m)yNimi(r,6), (13)

Njm;

yields

Da=Ca3*1f 2% 3dr'[f, (r')cosmu,

+0i (r)sinmu,]F —o(r’) (10)
with C,=1 if |AJ l)=|01D), C,=v2 if |AJl,)
=[111) and G,=0 otherwise.

The excitation process thus restricts the sum aver Eq.
(8) to the only two states for which G=0. This further
has the consequence of restricting the sum gves the
values that yield a nonzerdqj|a), namely, [N;l;m;)
=[010, [N;ljm;)=[210 and|N;l;m;)=[21+1). Since the
energy partition is

E=Eﬁ'jmj+Nj(Nj+1)Br+mjy/2, (12)

ated with the core in stafé\;m;),

2 . 1/2
risin 6ik

wNimwr,e):% g (r, 0

r?siné
xANIM(r. )
k H

xexdi(SHM(r,0)— wp M w/2)]. (14)

A andS, are the classical amplitude and phase functions for
trajectoryk in the 2 dimensional axial plane, ang is the
associated Maslov index. The superscrigis; on theclas-
sical quantities determine the energy at which the classical
trajectories must be calculated, following the energy partition
(12); the value ofm; also affects the counting afaxis cross-
ings in the computation of the Maslov indg4,5].
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The wave on the initial surface associated with the core in-/gr, cog(6;— 6,)/2], where Sl’:l(jg]ésed) is the action of the

. . N:m: .

stateN;m; is written ¢ (r;, 6) and given by the term kih trajectory closed at the origin. The angle of stationary
between the square brackets in ELR); it takes the approxi- phase is then simply;, and the stationary phase integration
mate analytic form leads to

Njm;

1/253/4,. —3/4
out 2 Ari

(ri,0p)=—im Nom ) 277(27Tﬁ)1lzei”/4
i i 271/4|,f

X 2 | (= D)1 m (Og €' (VFT7377%)
|= mj

X EK Yl*jmj(afk)rirf_l

X iTia! N: | m: .
; e'™«(Njl;m;|a)D,, (15 _ . 12 Nim,
X |S|n G Sin Gfk| /A\kJ J(rf ,0fk)
. N:m;
Note that Eqs(14) and (15) have the same structure as the x exdi (S, (J:lgsed)_ 8r.—\8r,

semiclassical outgoing waves in atomic closed-orbit theory.

The overall wave function in the outer zone is a superposi- N N

tion of such wave functions, taken for different dynamical —o ) m2) g O 0D - (19
regimes. But, as expected, the classical dynamics of the elec-

tron in the outer region does not depend on the presence @fhoosing r;=r;, using the zero-energy approximation
the core. gl_j(r)—>—iH(2fj)+1(J§)/J§, where H(Z?j)ﬂ is the Hankel
function of the second kind, together with the asymptotic
approximation taH$?), , , we obtain our final expression for
1. Returning waves in the inner region the coefficients :

D. Primitive returning waves

Eventually, some trajectories in the outer region return to
the.inner region. The wave function in the part of 'the'oute_r Cr‘jmj:h1/223/223772rf1/2e—iw/2[ s Y, (610
region near the inner region, where the magnetic field is ! ko
weak, is the one carried by the classical trajectories closed at
the origin. It is given by Eqs13)—(15), where the sum over
k involves the trajectories that return to the inner region. The Ny e Nym
wave function in the inner region is written as a MQDT ><exp:'(S‘k(closed) 81—/ ml2)]
expansion in the uncoupled basis, EB5),

X(—1)i"2|sin 6, sin 0 VAN ™(r ¢, 050

X ‘/’:d{nj(ri aaik)]- (20
=2 12 ¢ 08 fi(D+Tjgi (0, (16
I

2. Contribution to the oscillator strength

where the superscript 1 indicates the first return to the inner These primitive returning waves contribute to the oscilla-
region. The coefficients; are obtained by matching! to  tory part of the oscillator strength through the imaginary part
Eq. (13). Orthonormality of the core states leads to an inde-of (D |G| D ) [5] which we rewrite here a&y,|D| 1),
pendent matching for eaditym; subspace. We thus break the i.e., the overlap of the initially excited waves with the return-
radial standing-waveﬁj in Eq. (16) into incoming and out- ing waves. Following the same arguments given in Sec.

going Components: fo”owing EcKB4), we ha\/eflz(glJr 1l B, in order to calculate the deOle transitio[ﬂl,l must be
—g;)/2i. Hence, \f/]vritten in the coupled frame. Using Eq®83) and (B4), we
ave

Z _Cl’\jljijl,-mj(@f)gl_j(rf)/Zi:‘ﬂijj(rf"9")’ @7

, PN =2 |ajc,emelf) cosmu,+ar sinmu,),

where we have written explicitlyjzcr_'imi. We now use the (2D
]
orthonormality of the spherical harmonics, to write where the expansion coefficients are obtained from the
coefficientsc; of Eq. (20) via the frame transformatiofB7).
_ Ny - .: f” . * N c, represents the weight of the returning waves coming
¢ oy (rp)fa=2m 0 A6 SIn O Yim, (61) YT 1, 61), along all the trajectoriek closed at the origirtand for all of

(18)  the allowed dynamical regimes of the Rydberg electron, in-
dexed byN;m;) that find themselves recombined in the
and perform the integration for each trajectdrysing the  coupled channek. This recombination depends both on the
stationary phase approximation along the angle of stationcharacteristics of the classical trajectories and those of the
ary phase. Proceeding as [2], we write the action at quantum transformation coefficients. Using K@), we ex-
(r¢,05) for the kth trajectory asSEij(rf,af)=SL“(icnlgsed) press the overlap as
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. . 3o x original orbits in reverse without changing the state of the
(ol Dlyty=2 c, a2 32D . (22)  core. Their contribution to the modulations of the photoab-
“ sorption spectra is taken into account by keeping track of the

This expression is evaluated by expanding the coefficiepts Orbit repetitions and we shall not be concerned by these
in terms of thec; and by using the united atom approxima- Waves in what follows.

tion. This approximation consists of setting the radial inte- The second term, namely,

gral appearing in Eq10) to some unknown valugdepen-

dentof . We thus determine relative oscillator strengths andyl, (r,6)= > [N;m)>X Y, . (0)g, (N> ¢,/ T;r, (25
accordingly replac® , by C, (the united atom approxima- Njm; o : i’

tion is known from field-free experiments to be adequate for ) .
H,; in the general case, relations between the radial integralrsepres’ents the core-scattered waves: each newly ouigoing

for different values ofx may be extrapolated from field-free V2'€ leaving the core in staf#l;m;) results from the scat-
ab initio calculations or from experimental data tering into channgl from waves that previously returned into

The final result is channelj’, i.e., with the core being in a stai®; m;/).
These interchannel mixings are formally represented by the

(| D| ) = h 2215147512 T-matrix elements. ' '
These outgoing waves leave the inner region and propa-
. . i ate semiclassically in the outer region. The procedure de-
x 2 13 (ila'Kali)C,Cpeimhatrary
j ’

scribed in Sec. Il C is now applied to ER5). We have in
the outer region

X > Rl (23 -
K Veord T 0)= 25 [Ny di(r 6) (26
1
with .
. with
Rle=18in Oy sin G| Y AN (1, 6y
i 77— V20— 714, —314gi (BT~ 3/4)

Y, 0)= >,
q

X X i (S tseq™ @y /12— 37/4)]

X ; 2 (=Y m (63 x>, ¢y ; Yim (6ig)(— 1))
|]> mJ\ |jf2 er| 1 j/ |]> mJ\ I

lin/*
X(=1) Y7, (k) (24) r2sin 6 112 - e
_ o o — Aql l(r,e)exm(SqJ I(r,0)
Note that, for the orbit along the magnetic field axis with resiné
0= 0;=0, R | as given by Eq(24) is identically zero and Njm,
must be modified following the prescription given in Appen- — g ml2)]. @7

dix D.

The imaginary part of Eq23) gives the sinusoidal modu-
lations contributed by each orlitof the electron associated
with a given statéN;m; of the core. In the present model the
sum overj runs over the four allowed core states drel.
ForN=2 m=0,*1 the actions are smaller and the resulting Y= [ dp[5 AN+ Tj f9|+j(f)], (28)
modulations are larger than for the orbits associated With J i’

=0 m=0. Note that the contributions of the classical orbits\yhere the superscript 2 stands for the second return to the
for the different values of are combined through the term ;,qr region. The coefficientd; are obtained by matching
betvv_een braces which reflects the inner-region quantum dyy,ig expansion to the semiclasjsical returning waossEqs.
namics. (17)—(20)]. Note thatd;, similar to Eq.(20) with ngﬂ"i re-
placed by the term between brackets in E2j7), contains
terms of the form

Some trajectories] eventually return to the core, and the
returning wave is matched to a MQDT expansion analog to
Eq. (16),

E. Core-scattered outgoing waves

The outgoing part ofy(r) [Eq. (16)] contains two dif-
ferent terms. First, the wave scattered by the Coulomb field,
composed from the outgoing parts flf; on the boundary

radius, we havegfjr(rf)~—e2i Js—rfe‘m”’zgl_j(rf), so taking
into account the increase of the Maslov index by one at the

origin, the Coulomb scattered waves are simply given bywhich clearly combine a classical trajectdrgssociated with
e? \/s_rfe*'ﬂ//'\‘imi(rf ,6): as in atomic closed-orbit theofy] ~ a core in stat¢N;m;.) and a trajectory] associated with a
these waves are strongly backward focused, retracing theore in statgN;m;).

> AN exdi(SNM— wNiMi7/2)]
g q q

x AN M exdi (S — wl ™ w/2)],  (29)
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The contribution to the oscillator strength is given by theThus, if for example the classical dynamics of the electron
overlap of these returning waves with the initially excited associated with the core in stalé=0 is kept fixed(i.e.,
waves, €n=o IS constant the classical dynamics of the electron as-

sociated with the core in staté=2 will vary with y~ 23,

thereby encompassing different classical regimes.

If we now setB,=y 3B, to be a constant, Eq32)
reads EN:OZEN1+§,»NJ'(NJ-+1) resulting in simultaneous
which may be written in terms af; and takes the form scaling of the various classical dynamics of the electron. This
procedure amounts to introducing in our calculations an ar-
tificial *'® dependence of the rotational constant. Indeed, if
the scaled spectrum is calculated in an intefygl *, y, %]
with the midpointy, =% (y; ¥+ y, 3, we set

(Po|D|y?)y =2 d, e ™27 3D% (30)

($olDly?) =2 2 (i'la’)(alj)CoCqrel mka™ Ha)

jj aa

X ﬁ1’2215/4775/22 Rﬁ,}
K

B(%)=Yma ¥?*B;, (33)

12511/4_3/21 i where B,(y) is the rotational “constant” for our model
x| A2 ZT“'E R } (31) which coincides with the physical rotational const&ntfor

y~ =13 ‘and which has the important property of yield-

where the classical quantitiés are given by Eq(24) and, as  ing a fixed value of the “scaled rotational constanﬁ’;
explained above, must be modified whér O or 7 follow- =~ 28B,(y). The consequences of such a choice will be
ing the prescription given in Appendix D. The sum over thediscussed in Sec. VI. We note, however, that the use of scal-
closed classical orbits contains implicitly a sum over the reping techniques in molecular systems, which typically have a
etitions. The last brackefwith the trajectories labeled) nonscaling Hamiltonian, has been advocdi@4] as an effi-
represents the orbits consecutive to core scattering and actent manner of extracting the underlying classical motion
accordingly weighted by the quantum scattering matrix elethat appears in quantum spectra.

ment T;;,, the transition amplitude connecting the waves

which originally enter from channgl and leave in channel 2. Scaled absorption rate

j- Hence, Eq(31) takes into account both elasti€(=E; ) The rate of production of excited molecules is given by a
and inelastic E;# E;/) scattering, and vanishes if there is no g qqth hackground plus oscillatory contributions. The oscil-
core scattering. Note that in the case of single-channel Scafating part of the absorption rate%(y,e), is related to the
tering, Eq.(31) reduces to the one core-scatter approXima-yqcillator strength of Eq(1) by [8]
tion obtained in the atomic ca$&3].

Note also that further iterations may be taken into account fi(y,e )
if necessary: the waves that return to the inner region for the Fy,e)=vy~ ve - E_E (34)
second time are scattered by the core, and produce newly 0
outgoing waves given by2j|j>21-,dj,T“,g|+j(r). These
waves propagate in the outer region; E@6) holds for
Y2, {r,0) provided the coefficients; in Eq. (27) are re-

At fixed values ofe, this reduced absorption rate reads

placed by thed;’s, and the eventually returning waves are Flhe) = ﬁl,z > Im[( ol D)1, (35
matched to a new MQDT expansion with coefficieafs eff
whereP counts the number of returns to the core region. For
F. Scaled energy spectra example, taking into account only terms upRe=2 gives
1. Scaling the rotational constant [Egs.(23) and(31)]

As in the case of nonhydrogenic Rydberg atoms, the semi-
classical formulas derived above only contain the classical (%) = 29w 3/22 Z 2 Im[ alj)C,C, e THatra’)
trajectory parameters corresponding to Hyalrogeniccase.
Hence, the scaling transformations for a hydrogenic electron
in a magnetic field, given in Appendix A, were employed,
leading to calculations at some fixed value of the scaled en-
ergy e=Ey %% with an effective Planck constant .
=13, From Eq.(11), it is clear that the present problem XE ('a")T 2 RIS R’ “ (36)
does not yield an exact scaling property; multiplying both q
terms of the equation by~ ?? and neglecting the Zeeman

shift leads to where the factorsR) are now written in terms of the

scaled classical variableS, =7.S/27% and T; YAl
=22 cos@/2)cos@r/2)m;, Y% wherem,, is an element

x| ([0S Rl 22183
k

eN:0=eNj+7_2/3BrNj(NJ-+1). (32
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of the 2x 2 stability matrix evaluated in the scaled semipa-tonian matrix at each reference energy, was used successfully

rabolic coordinate systerfsee Appendix [ in Ref. [10] to study the spectra of nonhydrogenic atoms in
fields.
IV. QUANTUM CALCULATIONS This method was adapted here for the corresponding

scaledmolecule in a magnetic field. With rescaled position
We calculated a set of quantal eigenvalues and eigenstatesordinategsee Appendix Athe corresponding outer-region
for the scaled molecule, corresponding to scaled energy Schralinger equation may be rearranged to take the form
=—0.3in theN=0 channel anég= —0.8 in theN=2 chan-

nels. These were then Fourier transformed and compared 11, ﬁ’f" , -
with the equivalent spectral range in the semiclassical calcu- |~ +gf SN’ 6+ eym— € o= AV~ Lidhn.
lations. (41)

The method employed is similar to that used previously
for unscaledcalculations of Rydberg Hin a field by He e ¢ are the scaled channel energies explained in Sec.
etal. [21]. The Schrdinger equation, in an outer-regi®g ||| £ apove. This solution of the equation now represents a
<r=oo where short-ranged interactions with the core may begeneralized eigenvalue problem with the magnetic fi@lﬁ%

neglected, is corresponding to a set of fixed scaled energies in every chan-
1 1 1 nel andyﬁ’3 plays the role of an effective Planck’s constant.
Hotn=1 — = V2= =+ = v2p?+B,N?%+ yL, | )=Enih,. In our calculations, we allowed ten channelé=0,2,4,6
2 r 8 with three Zeeman components in te-0 channels How-
37) ever the contribution from the=4 andN=6 stateqwhich
_ . were relatively few in numberis small. It was found that
In Ref. [21], the solutions were expanded in the uncoupledgj,sting the exponent on the Sturmian basis for each chan-
basis |j)=[NIm)=Yu(r)Ynm-m(R) (we drop the sub- g i.e.,Sg’I“m(r) was essential for an efficient calculation.
scripts if they are not necessanyith the radial part of the = ;o thelCl>0 states correspond to low-principal quantum
wave function described in a basis of Sturmian functions numbers, a much smaller basis could be used. So although
o we have ten channels, the Rydberg molecule calculations in-
(1 R)= Z Cwlm_nl“\“ ), (39) volve matrices only two or three times larger than an equiva-
NTm r lent calculation for a Rydbergtomin an external magnetic
field.

and the outer-region Hamiltoniaf, was then diagonalized
in the uncoupled basis with an additional surface term, i.e., V. RESULTS

A. Introductory remarks

<‘/’n’|Ho+L|'/’n>:En5nn’- (39 ) ) )
We compare below the semiclassical calculations, ob-
The surface operator is known in terms of the moleculatained by following the theory detailed in Sec. Ill, to exact
basis|AJl)=|a), quantum results obtained Hy-matrix calculations as out-
lined in Sec. IV. Previously22], we have found a reasonable
R 9 agreement between semiclassical and quantum calculations
L=-> |a>5(f—fo)((77—5a)<a|- (400 in the case of K and its isotopomeréthe figures shown in
“ [22] were for T).

However, an appropriate comparison between semiclassi-
cal and quantum calculationgvoiding the appearance of
purely quantum effecjsrequires the dynamics of the outer
electron to have attained the semiclassical limit in both rota-

The first termé(r —rg) 9/ dr is a Bloch term which is neces-
sary because the?tlr? operator is not Hermitian over the
limited ranger ,<r <. TheB, [10] are logarithmic deriva-

tives given |In terms of the MQDT wave functions, i.e., tional channels. As implied by EqéL1) and (32), the effec-
Bo(En.r)=P"(En.r)/P(Ey.r)  where P(E, 'r):fla(r) tive quantum number of the=2 Rydberg series decreases
—tan(mu, )9 (r) with f and g denoting the regular and with an increasing rotational constaBf. So whenB, in-
irregular Coulomb functions, respectively. While we do notcreases, lower energies are obtained inNlve2 channels for
have the exact logarithmic derivativBs,(E,,,r) one can ex- a fixed value of the scaled energy_,. We choseey_o=

ploit their relative insensitivity to energy. A value for the —0.3 because recurrence spectra for hydrogen and nonhy-
logarithmic derivative at some reference energy,(E drogenic Rydberg atoms for that particular valee —0.3
=E,,r) is used to obtain good approximations to a few ei-have been extensively investigated. However, in order to
genvalues with energies close By=E,. The reference en- compare quantum and semiclassical results, the scaled quan-
ergy is then adjusted and the next band of energies is odum calculations for a molecule need to be performed for
tained: and so forth, until the desired stretch of eigenvaluebigher values of the effective quantum numbfer the same

and corresponding eigenvectors has been obtained. This prealue of the scaled energy in thé=0 rotational channgl
cedure, combined with the efficient Lanczos algorithm whichthan for an atom. This requires increasing basis sizes, CPU
computes only a few neighboring eigenvalues of the Hamiltime and computer resources. Foj, the value of the rota-
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tional constantB,=1.33x 10 * a.u. is particularly large, so
obtaining appropriate quantum calculations for a detailed
comparison with the semiclassical calculations is prohibi-
tively expensive.

To assess the validity of the semiclassical formalism vis-
avis exact quantum mechanics, we have chosen instead to
investigate a model molecule with a smaller rotational con-
stant, thereby reducing the gap between the energies of the
electron associated with the different rotational channels. We
compare below the results fal=0, in a magnetic field
range y~ *=60—120 at constant scaled energieg_,=
—0.3 and ey—,=—0.8 (equivalent to choosind, (y,°
=90) about four times smaller than the rotational constant of
T,). Note that from a qualitative standpoint, the classical
dynamics of the electron is not modified for larger choices of
B, : indeed, this would only bring in lower values ef,_»,
and it is well-known that, even a¢=—0.8, the classical
dynamics remains very close to its integrable limit — oo,

IFT|

IFT]

B. Recurrence spectra

IFT]

Figure 2 displays the Fourier transform of the oscillatory
part of the photoabsorption spectra for different choices of
the quantum defectgs andup; . As usual, the smooth back-
ground term has been subtracted before taking the Fourier
transform of the quantum spectra, whereas the semiclassical
recurrence spectra were obtained by taking the Fourier trans-
form of Eq. (36), thus including one core scattering. Equa-
tion (36) is of course proportional to the imaginary part of
Egs. (23) and (31), which will prove more useful in the
analysis of the present results. Since the intensities are only
defined to an overall constant, the quantum and semiclassical
Fourier spectra were renormalized, usually by adjusting the

amplitude of the peak at scaled actiBr 1.26[labeled 1 in
Fig. 2@]. The main peaks in Fig. 2 are numbered. The clas- 1 2 8 4 5

sical closed orbits that contribute to the semiclassical spectra Scaled Action

are plotted in p,z) coordinates in Fig. 6 in Appendix D

while Table | lists the scaled action and amplitude for the

first returns to the nucleus of each of the orbits and identifies FIG. 2. Recurrence spectra for molecules with different quan-
the numbered peaks at which the orbit and its repetitionsum defects at scaled energigg_,= — 0.3 (predominantly chaotic
contribute; the correspondence with the orbit labeling conphase spageandey_,=—0.8(near integrable phase spacaithin
vention introduced in Ref.29] is also given. each panelguantumcalculations are displayed on top asmiclas-

In the case of zero quantum defefig 2(a)], the T ma-  sical calculations upside down. The main peaks are indicated with
trix vanishes and there is no core scattering: the resultingfumbers corresponding to the classical hydrogenic orbits given in
spectrum is identical to the one obtained in the case of théppendix D, or to a combination of those orbits via core scattering.
hydrogen atom ag= _03’ which has been extens“/ely in- (a.) ,LLEZO, /ano Only the hydrOgenIC orbits associated with the
vestigated and discussed thorougtege[8] and references ¢ore in stateN=0 appear in the recurrence spectruf) wus
therein. The absence of any features related to the dynamics - #n=0.5: new peaks associated with the core in stite
of the electron associated with the rotationally excited states 0 '€ Visible; these peaks are producedbtasticcore scattering.
of the core is evident. This is always the case when (O #x=0:5, un=0: additional peaks are visible; these new peaks
— s the sum over in Eq. (8) cancels foiN; =2, and thus correspondi) to the hydrogenic orbits associated with the core in

. - - . . stateN=2 (labeled afm==*1] and b [m=0]) and (ii) to peaks
no ele_ctron associated with &2 core is eXC'ted b_y the produced byinelasticcore scattering, combining hydrogenic orbits
laser field. Further, fops = u; nonzero, thé matrix, given

e ; .. belonging to the different classical regiméd) ws=0.22, uy=
by Eq.(B6), is diagonal and accordingly only the terms with _ ¢ og: these are the approximate values of the quantum defects of

N;=N;,=0 survive in Eq.(31). Put differently, there is N0 he ungeradé=1 complex of B at equilibrium internuclear dis-

rotational interaction, and thus only elastic core scattering igance; as ir(c), all types of orbitshydrogenic orbits of the electron
expected. In this case, the molecule behaves in a quasiatomigsociated with the core in statds=0 andN=2 m=0,*~1, elas-

manner. This is seen in Fig.(l® for the quantum defects tic and inelastic core-scattered orbitse visible, but with different
ms=pp=0.5; the additional peaks, not present in Fi(e)2  relative amplitudes.

IFT]
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TABLE |. Scaled action and amplitude of the classical closed orbits contributing to the semiclassical spectra @B, ande=
—0.8. The key A-U is used to identify the orbits with the trajectory plots displayed in Fig. 6. The peak label, corresponding to the numbers
used in Figs. 2 and 4, denotes the peaks in the spectra to which each of the orbits and their repetitions contribute. Note that the multiple
entries for the amplitude and peak label for orbits B, C, and D correspond to the contributions from the first, second, and third repetitions,
respectively, of those orbits. The orbit label identifies the orbit, where possible, with the familiar naming scheme introducef8j. Ref.

e=—0.3
Key Action Amplitude Peak Label Orbit Label
A 0.9753 0.6325 Ry
B 1.2636 0.2015, 0.1504, 0.1352 1,5,9 Vi
C 1.2910 0.4894, 1.1183, 0.6054 2,6, 10 Vv,
D 1.9541 0.6065, 0.4011 3,10 R
E 2.4444 0.1247 4 V3
F 2.5323 0.1125 5 V3
G 3.0389 0.1179 7 R}
H 3.5862 0.0679 8 V3
| 3.7486 0.0555 V3
J 3.7917 0.1315 9
K 3.7941 0.1199 9
L 3.7944 0.1409 9
M 3.8150 0.0462
N 3.8723 0.0437 10 W
o) 4.1575 0.0526 11 R}
P 4.7171 0.0349 %1
Q 4.9036 0.0327
R 4.9743 0.0450
S 4.9753 0.0391
T 4.9856 0.0942
U 4.9893 0.0934
e=—-0.8

Action Amplitude Peak Label Orbit Label

0.7487 12.7988 a Ry

0.7906 11.9017 b A

correspond to a combination of orbits associated with thdield (6;= 6#;=0); it is associated with the=2, m=0 core
groundN=0 core statde.g., the peak a=3.21, which is  State. The repetitions of these orbftise first of which are at

the combination of the hydrogenic orbits 13 1.26 and 3 S=1.50 and 1.58, respectivelgre clearly visible. The peaks

at 5= 1.95). These additional peaks were observed in thgorrespondmg to orbits associated with the-0 ground

: : tate are also readily identifige.g., by comparison with
case of nonhydrogenic Rydberg atoms with a quantum defect ) .
w=0.5[13]. Note that the semiclassical calculation is in ex-—_ 9> 2a) and 2b)]; each of these involve both the hydro-

cellent agreement with the quantum results genic and the core-scattered orbits. Furthermore, there are

Figures 20) [ms=05, uy=0] and 2Zd) [ws peaks appearing at a scaled action corresponding to the sum

~0.22, uy=—0.06] display a far greater number of peaks, Sf an ey-o orbit and aney -, orbit. For example, the peak at

J— T H H 13 1
characteristic of a more realistic molecular situation. First ofS—2.01 arises from the combination of the ba”00"~’1
all, peaks corresponding to contributions from the orbits aseorbit (peak 1 at scaled energyy - o= —0.3 and actiors,
sociated with an excited core corresponding to a classicak1.26 with the perpendiculaR; orbit (peak a at scaled

dynamics at scaled energy,-,= —0.8 are clearly visible. energyey ,_o=—0.8, and actiorNSq=0.75(and it is accord-
J

The shortest of these orbits gives rise to the peak labeled a %tgly labeled a1). From a physical standpoint, the resulting

S=0.75. It is an orbit perpendicular to the field axis; (  peak is produced by inelastic scattering: the electron along
=0;=m/2) and is associated with thé=2, m==x1 sub- 5 ohit k with the core in statg collides with the core,
manifold of the rotationally excited states, since the facmrexchanging energy and leaving the core in sfatalong an

R | given by Eq.(23) vanishes for this orbit whem=0. it g, as predicted by Eq31).

Next to it, the peak b aB=0.79, which appears with a far Hence, the vast majority of the peaks appearing in the
smaller amplitude, corresponds to an orbit parallel to theyuantum recurrence spectra of Figgc)2and Zd) are ex-
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plained semiclassically as resulting from primitive, elastic,
and inelastic core-scattered orbits. Furthermore, our semi-
classical theory is seen to yield a good quantitative agree-
ment with the exact quantum calculations. Equati@g)
indicates how the relative amplitude of the peaks corre-
sponding to the primitive orbits associated with the core in
statesN=0 andN=2 depends on the short-range quantum
defects. Equatiori31) shows the dependence of the elastic
and inelastic peak heights on the value of the quantum de-
fects: indeed, the amplitude of a core-scattered peak depends
both on the classical properties of the orbits, contained in the
factorsR, and on the purely quantal scattering matrix ampli-
tudesT;; . Note also that different orbits or combination of
orbits having the same total scaled action will interfere, add-
ing constructively or destructively as a function of their rela-
tive phase, which contains terms having a classical and a .
guantum origin. All these effects combine to give the differ- 1.9 195 2
ent recurrence spectra displayed in Fig. 2. Scaled Action

IFT| (arbitary units)

AW N =2 O =2 N W B O

FIG. 3. An enlarged view of the peak &t=1.95 in the recur-
rence spectrum withus=0.5, u;=0.5 [peak labeled 3 in Fig.

Closed-orbit theory—as with any semiclassical form-2(b)] is shown. Top: quantum result. Bottom: the dashed curve
alism—fails when the classical parameters become singulagives the standard closed-orbit result, in which only Bieorbit
for example, near bifurcations, where newly created orbitgontributes to the recurrence spectrum; the solid line includes the
are born, the stability matrix element;,—0, and the am- contribution of the perpendicular orbit lying on the node of the
plitude of the corresponding orbit is overestimafsde Eqs. wave function, which results in a constructive interference. The
(D1) and(D2)]. This is seen in Fig. 2 for the peak labeled 9 solid line is in excellent agreement with the quantum calculation.

at $=3.79 where the semiclassical amplitude is overesti-
mated, due to the existence of a period-three bifurcation of@s a small amplitude, its second and fourth repetitions have
V1 at a slightly lower-scaled energy=—0.3184[25]. Note @ Very large amplitudesee the suggestive Fig. 12(d)); the
that the semiclassical amplitude of a peak produced by corgame type of mismatch is actually observe&at3.9, on the
scattering with a hydrogenic peak that is overestimated wilfourth return of the perpendicular orbit. But since for the
likewise be overestimatefet.g., the peak-a9 in Fig. 2c)].  perpendicular orbit = 6= m/2, Y vanishes and this orbit
Such failures of semiclassical formulas are generally redoes not contribute to the spectrum according to the “stan-
paired by resorting to uniform approximations, and this haglard” semiclassical formula.
been investigated for closed-orbit theory by Main and Wun- The contribution of orbits lying in the node of a wave
ner[26]. Here we shall mention two other effects that appeaifunction was observed in the comparison of quantum and
at higher orders ofi and that account for some of the dis- semiclassical calculations for the hydrogen atom in a mag-
crepancy between our quantum and semiclassical results. netic field [27], and a quantitative formula was given; the
contribution of those orbits was found to be extremely small.
1. Semiclassically forbidden orbits Such contributions also arise in the spectra of nonhydrogenic
atoms and the present results indicate that the resulting effect
ust be stronger than in hydrogen. The inclusion of these

large amplitude will nevertheless not contribute to the recur—Orbldden orbits I_eads t_o an 'r_“p“?"ed agreement with the
rence spectrum. For instance, when the initially exciteduantum calculationssolid line in Fig. 3. The reason was
waves propagate in the outer region or return to the innefl€ady put for_ward by Shawt al. [.27]: an orbit .cI(_)sed at
region, Eq.(24) asserts that if the initial or final angle of the core is not isolated, but has neighboring orbitsich are

trajectoryk lies along a node of the wave function, th&gp not closed at the origin The .contrlbutlon of Fhese orbits
compared to the central one is usually negligible. However,

Qere the central perpendicular orbit lies on a node of the
itial outgoing wave function so the semiclassical wave
unction can only be carried by the neighboring trajectories.

C. Higher-order effects

From the formulas given in Sec. lll, it is apparent that
some classically existing closed orbits that might have

guantum spectra. We have plotted in Fig. 3 quantum an

semiclassical recurrence spectra with:=0.5, =0.5, ) .
howing th K led P ~ thy he d 'U“Hd ine | At e=—0.3, a strong focusing effect is produced on the sec-
showing the peak at scaled actiSr 1.95. The dotted line is ;4 4nq fourth closures of the central orbit, bringing together

obtained by Fourier transforming the semiclassical spectrgeyr the core region all the neighboring trajectories. Hence,
obtained with the “standard” formula EG36). However, we  jih6,gh the contribution of the neighboring orbits is sup-

know from classical calculations that at=—0.3, S= 195 pressed by a factdr relative to the other contributions, it is
is the scaled action of the second return of thePerpendlculagti” sufficiently strong ath .4~ 1/90 so as to be clearly vis-
orbit R;. Although R; which has a scaled actioB=0.975 ible in the recurrence spectra. The method used to obtain the
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FIG. 4. Recurrence spectrum as in Fig. 2, but for the quantum
defectsus=0.5, uy=—0.5. Top: quantum calculations. Bottom:
semiclassical calculations. See text for discussion.

solid lines in Fig. 3 is of course not specific to molecules and
will be described elsewhef@8]; although it is based on the
same physical idea, our derivation proceeds differently to
that given in[27], and yields different results. We have in-
cluded the contribution of the on-node perpendicular orbit in
the semiclassical calculations shown on Fig. 2.

p=4

|Fourier Transform| (arbitrary units)

2. Multiple core scattering

We have plotted in Fig. 4 the quantum and semiclassical J‘
recurrence spectra for the choice of quantum-defests A | A J
=0.5, ug=—0.5. Although such a combination is quite un-
physical for typical molecules, the examination of this case p=
is instructive. The graphic reveals two striking aspects: first,
the amplitude of the orbits associated with the core in state
N=2 are much stronger than the amplitudes of the orbits
associated with the ground state=0 of the core; second, A‘
there is a strong discrepancy in the amplitude of he2 S A . I -
orbits, which increases with increasing scaled action. 00 10 20 30 40 50
In the cases presented in Figgc)2and 2d), both elastic Scaled Action
and inelastic scattering was allowed, but the quantum transi-
tion factor for orbits with the core iN=2 states was stron-
ger for inelastic scattering, and elastic scattering fdr=2
orbits (including N=2, m=0 to N=2, m==*1 scatteringy
was weak [by quantum transition factor, we mean

the q.l;lan,tum . Scatten?gw Ea,t)ed part_ O_f Ed31), of core scatters is indicated p—1: p=1 shows the hydrogenic

2] |_a >_<_CY|J>CaCa'? ‘e #aTyi,, which indeed fac- (o rence spectrum, with the primitive orbits a,b, and their repeti-
tors the individual contributions of the classical orhiBut  tjons p=2 shows the situation after one core-scattering process, so
whenus=0.5, up=—0.5, this quantum factor vanishes for
EiqﬁEi’ , thereby totally suppressingelastic scattering. second repetition of a with the core-scattered orkitaa Conver-

!\/Ioreover,elastpscattenng betlweeNz 2,m=0, +1 orbits ence(for actionsS< 5) is seen to be achieved after including five

IS enhanced, being about 60 tlme_s strqnger thgn for the Cong’ore scatters. Agreement with the quantum resiitg. 4, top is

bination of quantum defects giving rise to Figgc)2and _ then obtained.

2(d). Hence, we have a quasiatomic situation for the orbits

associated with the core in statds=2, with strong elastic —0.8, each panel corresponding to an increase in the number

guantum scattering and strong classical amplitudes, the latt@f core scatterings. It is seen that convergence is achieved

characteristic of the quasiregular regime which prevails aafter five iterations, after which the semiclassical recurrence

e=—0.8. spectrum agrees with the quantum results. In short, although
We may thus expect multiple core scattering to have amultiple core scattering is a higher-order effésince each

important effect. This is seen in Fig. 5, where we have plotcore-scattering process is suppressed by a facté# for

ted different recurrence spectra of the=2 orbits ate= the parallel orbi}), it must be taken into account when the

A A "
A

I

FIG. 5. Semiclassical calculations with allowance for multiple
core scattering at=—0.8, corresponding to the orbits associated
with the core in stat&l=2 shown in Fig. 4. Each successive panel
adds an additional encounter with the core, and thus an additional
orbit which interferes constructively or destructively. The number

for example, the peak &= 1.5 results from the interference of the
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amplitudes are stron@which happens here with thid=2 In conclusion, we have presented the theoretical frame-
orbits when elastic scattering dominatesr for higher ac- work for a closed-orbit treatment of molecules in fields. The
tions of the recurrence spectra. main extension was seen to be the combination of multichan-

nel quantum scattering with hydrogenic closed orbits. We
have also compared semiclassical and |&Rgmatrix quan-
tum calculations for a model molecule in a static magnetic

The theoretical developments presented in Sec. 1l calledf€ld. The molecular core plays the role of an effective two-
for the usual approximations involved in atomic closed-orbitlevel scatterer: the ground state of the core was associated
theory, which has been interpreted and compared succes\é’_lth classical trajectories of the electron in the chaotic re-
fully to experimental spectra in both the fixed magnetic fielddime, whereas the excited state of the core was associated
and constant scaled-energy domains. However, an approx{!ith trajectories in the quasiregular regime. Hence, the core
mation made in Sec. Ill F, when we applied the ideas ofiS |ntr|n3|.cally a quantum opject, on.wh|ch_the semiclassical
scaled-energy spectroscopy to the molecule, is questionabl&aves diffract, either elastically or inelastically. The agree-
Indeed, to achieve the scaling we were led to artificiallyment between semiclassical and quantum results were seen
modify the rotational molecular constant because a molecu® be good, and the aspect of the recurrence spectra crucially
lar system does not scale exactly. From a theoretical point diepended on the value of the quantum defects.
view, the role of this approximation is to ease the extraction
of the underlying classical dynamics. However, in an experi- ACKNOWLEDGMENTS
mental situation, the magnetic field and the excitation fre-
guency of the laser would be simultaneously adjusted so a]_s2
to keep the scaled energy of the most excited eledtren
that associated with the molecular core in its ground state, i
this caseN=0) constant. When, say, the field intensityis
increased while keepingy-, constant, the electron associ-
ated with the excited core will encompass different dynami-
cal regimegand ey, will vary according to Eq.(32)]. In
general,ey—, will be contained within the quasiregular re- | this appendix, we give the Hamiltonians for the hydro-
gime, which brings in simple dynamics since there are onlyyen atom in a magnetic field and show how it can be scaled
two short-action closed orbits but the actions of those orbitg, remove the separate dependence on electron energy and
do change, since the periods get shorteeas—x=. There-  fie|q strength. Classically, the dynamics of a highly excited
fore, the physical mechanism that we described above, ifygrogen atontin a state withm=0) in the presence of an
which the spectral modulations are explained in terms ogyternal static magnetic field aligned along thaxis is de-
inelastic and elastic core scattering still holdsis mecha-  scribed by a single-particle, nonrelativistic Hamiltonian. Ex-

nism is independent of the scaling prop_erties of the sy)ste_m pressed in atomic units and cylindrical coordinatesdz),
But we do not expect a standard Fourier transform to givgpis is

recurrence spectra as clean as those presented in Fig. 2, and
other numerical method®.g., ay-dependent Fourier trans-

VI. DISCUSSION AND CONCLUSION

The authors thank the Engineering and Physical Sciences
esearch Counci(UK) and the European Commission’s
H—|P-MCIF Program for financial support which made this
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APPENDIX A: HAMILTONIANS AND SCALED
VARIABLES

1 1 1
form) will need to be employed if the classical dynamics H= E(p§+ p2)— ———t g)/zpz, (A1)
associated with the excited core states is to be extracted. (p*+2°)

Further refinements can be included in the semiclassical ) L
theory. On the one hand, methods to correct the breakdowfNere is the magnetic field strength. . ,
of the semiclassical approximatiddivergences at bifurca- | "€ classical motion of Hamiltoniafh1) exhibits an im--
tions, “ghost” orbits are well known, and these are not spe- portant scaling property. If we transform variables according
cific to the molecular extension—in fact, they only concern 0
the hydrogenic classical dynamics, although in a molecular ~ ~ ~
spectrum each mismatch arising from such a breakdown r=y" p=y Y t=t, (A2)
would be propagated through core scattering. On the other
hand, the inclusion of further molecular perturbations, such"
as the provision for vibrational and electronic interactions
can be included in the semiclassical theory. This is naturally A= 1(5 D) —
included within the MQDT formalism by extending the 2°"p T
frame transformation from a rotational to a rovibrational one,
and replacing the short-range quantum defestsu; by a  which is simply the original Hamiltonian of EGA1) multi-
nondiagonal matrix depending on the internuclear distancelied by y~22. In terms of the scaled variables, the classical
[15]. In this situation, a great number of Rydberg series in-dynamics no longer have a separate dependence on the en-
teract, each built on a different rotational and vibrationalergy of the electrork, and field strength but is governed by
state of the core. The spectral modulations will then esserthe single parameter, ttszaled energy=Ey %3
tially result from inelastic scattering between the outer elec- In order to solve numerically the equations of motion gen-
tron and the molecular core. erated by HamiltoniaifA3), it is convenient to make a regu-

e obtain thescaledHamiltonian

1

T~
Gt e A3
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larizing transformation that removes the Coulomb singularwave function then takes the form
ity. For the case considered here, where 0, this can be
achieved by transforming to semiparabolic coordinates, zps(r):E |a>2 Corl Sty (D) —tam(mu,,)g; (1],
(u,v), where =~ " a a
o o o (B1)
u’=r+z, v?=r—z, with r=(p?*+Z22)¥2 (A4) _ _ .
whereﬁa (g|a) is a standing-wave Coulomb function regu-

and with conjugate momentp,=du/dr, p,=dv/d7, de- Iar (irregulap at the origin and«) is a compound notation

fined with respect to a rescaled time,given by accounting for the core state as well as the orbital part of the
outer electron with the relevant angular momenta couplings;
dr 1 1 a is thus a set of “good” quantum numbers when the outer

(AS) electron is coupled to the core, and tan,,r are the ele-

ments of the coupled-frame reaction matixin the present
On transforming to semiparabolic coordinates our finalcaseK is diagonal with elements tanu,); the phase shifts
Hamiltonian becomes p induced by the short-range interaction are known as
“quantum defects.” Thec, are expansion coefficients. How-
ever when the electron roams far from the core, an expansion
in the uncoupled basisis appropriate,

it (W)

1 1
H=5(pi+p}) =~ e(u+v?) + guv(U?+v?) —2=0.
(AB)

Strictly, the Hamiltonian of Eq(A6) is only valid form
=0. However, fom+ 0, the potential-energy surface differs
from that form=0 only close to the axis where a centrifu- The two coupling schemes are related by a unitary frame
gal barrier now exists. Away from this small region near thetransformation with elementg|a).

z axis, the classical dynamics for smafi=0 differs only Equations(B1) and (B2) may also be obtained as a par-
slightly from that atm=0 and hence we find it convenient to ticular case of the Lippmann-Schwinger equatiphé]. It
use them=0 values in our calculations. The phase changghen follows that the coupled solution with outgoing-wave
arising in the semiclassical wave function because rthe boundary conditions is obtained as

# 0 orbits no longer cross theaxis but are instead reflected

at the centrifugal barrier is readily incorporated into the )= |a)c [f, (r)+(2i) (&2 ™e—1)g (1)],
Maslov index. @ @ @

The scaling transformation, E¢A2), has an important (B3)
consequence for the quantum system. Solving the ‘Schro
dinger equation corresponding to HamiltonigkB) at fixed Where
scaled energy leads to a set of eigenva[ux??} correspond- *_ i
. . 2/ . g =(g; *if; ) (B4)
ing to a set of energietE; = € 3} Thus, the field strength @ « “

each E; corresponds to a different value of an effective assumed a diagonal scattering matrix. In the uncoupled basis,
Planck’s constant, the value of which is obtained by considye have

ering the position-momentum uncertainty relation in the

scaledvariables, e.g.[p,,p]=%es=y*. However, all of N | . oy

the eigenvalues now co?respond tsiagle classical regime w(r)—; |J>§‘ CirLoj; Fi (D +Tjjegy (D], (BS)

and the semiclassical limifi.—0, can be studied by de-

creasing the field strength while keepiagconstant. where theT matrix is obtained from the quantum defects by
We also define the classicakcaled actionof the kth ~ applying the frame transformation,

closed orbit, which enters into the phase of the semiclassical Q2

wave function, as T =2 (jla)——5—alj’). (B6)

lﬂs(r):; |J>2 Cj'[5jj'f|j(r)_ij'9|j(r)]- (B2
i

2i

~ 1 [~ ~ e
Sk:ﬁ jg p-dg= Esk' (A7) The expansion coefficients;, are related to the expansion
coefficients in the coupled basis, by
where we introduced the arbitraryr2factor in keeping with
the usual convention. Ca:; (a|j)c,— : (B7)

APPENDIX B: BASICS OF MQDT . . . - .
Q in the field-free case, the expansion coefficients are obtained

Multichannel quantum-defect theof¥4,15 partitions the by using the boundary conditions at infinity; in the presence
system into the outer electroff radial coordinater and  of an external field, boundary conditions in a region where
orbital momentuni) and the residual ionic core. A standing- the external fields are weak will be used.
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FIG. 6. Shapes of the classical closed orbits of the hydrogen atom in a magnetic field at a scaled enrergP . The trajectories are
plotted in thepz plane and the dashed line denotes the energy surface. Only those orbits that contribute to the semiclassical recurrence

spectra for scaled acticB<5 are shown. The labels A—U correspond to the key used to identify the orbits in Table I.

APPENDIX C: GREEN'S FUNCTION exotics X. This terminology is given in Ref.29]. Figure 6
IN THE INNER ZONE shows all the closed orbits contributing to the semiclassical

The molecular outgoing Green’s functi@® in the inner ~ SPectra fore=—0.3 up to a scaled action &=5. Table |
zone is obtained by projecting the resolvent equatn 91Ves the scaled actl'on, E@A7), and chssmaI amplitude,
=Gy+ G, TGy, whereG, is the Coulomb(long-rangg mo- Egs. (D1) and (D2) with Aigg=1 fc_>r the first return _to the
lecular Green’s functionG, can be shown to take the form Nucleus of each of the closed orbits. The key A-U is used to
[16] |dent.|fy each o_f the orbits with their shape as shown in Fig.

6 while the orbit label refers to the nomenclature of R2€]
where available. The peak label gives the numbers, corre-
Golr.r')=2 |j><j|f,j(r)gﬁ(r’)[2W*1], (C)  sponding to the labeled peaks in Figs. 2 and 4, at which the
! orbits and their repetitions contribute to the semiclassical
_ 1 . + spectrum. Note that, for orbits B, C, and D, we also give the
\;VQSeJr?]\Q’/;F'(izLS is the Wronskian of andg "™ and we amplitude at repeated returns to the nucleus together with the
' ' label of the corresponding peak to which they contribute. For
completeness, we also include the data for the two classical
G(r,r')=—16m, |j>gf?(r’)[ > 16 f,(r) orbits that contribute to the spectrum in the regular classical
j : i’ : regime ate=—0.8. .
The classical amplitude of the orbita} in the two-
+T”—,g|+_,(r)]<j ’|]_ (C2 dimensional axial plane is determined from the evaluation of
. the 2X2 stability matrix in semiparabolic coordinates. We

have[12]
We also need to express the term between the curly braces in

the coupled frame. Using EB6) along with the unitarity of

the frame transformation yields K Oik ik i
AR="1Y2sin 67, sin 6% 2”%057 coS-my,
Gr.r)=-16r2 [i)g(r) 2 & «jla)
X[f| (r)cosmu,+g (r)sinmu,){al. (C3) (O 0,r), D
APPENDIX D: CLASSICAL ORBITS AR=tie{|2Y2m "1 (6=0,m), (D2)

The properties of the classical orbits closed at the origin
for an electron subjected to a Coulomb and a magnetic field
are well knowr[6,8,25. They are organized into “vibrators” wheremy, is an element of the stability matrix for theth
V, along thez axis, “rotators” R, in the axial plane, and return to the nucleus of tHeth closed orbit. A} is the result-
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ing effective amplitude; the term between curly braces isot valid in this case, resulting in a differefitdependence,

T 14|
re —Ag.

As is apparent from EqD2), the treatment of the orbit
parallel to the field ¢,,=0,7) is special in many ways. The
stationary phase derivation performed in E¢E3)—(20) is

but there are other differences as well: each term be-
tween brackets in Eq(31) needs to be multiplied by
hl22 V47~ 12172 when the orbitk or q is the parallel
orbit. This change must also be incorporated in ).
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