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Standing-wave rearrangement scattering formalism for multiarrangement quantum-defect theory
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Nonrelativistic time-independent quantum scattering theory for collisions with rearrangements is investi-
gated for standing-wave solutions, principal-value Green'’s operators, and related reaction operators. The so-
lutions corresponding to different arrangement configurations are obtained directly from the properties of the
noninvertible Green’s operators, without having recourse to arguments based on unitarity. By casting multi-
channel quantum defect theofMQDT) as a particular case of standing-wave scattering, a formalism for
multiarrangement MQDT is presented and methods for calculating the wave functions and reaction matrices
are proposed. The formalism is illustrated in connection with current work on ionization and dissociation in
H,. [S1050-294®9)07003-1

PACS numbg(s): 03.65.Nk, 34.10+x, 31.50+w, 34.50-s

[. INTRODUCTION ics of the electrons was of no concern. Only recently were
works published in which ionization and dissociation are

Standard multichannel quantum-defect thedQDT) is  treated within a unified MQDT formulatiofil2,13.
concerned with the dynamics of an outer electron moving in  Apart from this, the theory of nonrelativistic rearrange-
the Coulomb field of an ioni¢usually atomic or molecular ment collisions has been known for quite a long time since
core. The short-range interactions within the ion core inducéhe early papers of Lippmarii4] and Eksteirf15] and sub-
phase shifts, known as quantum defects, that modify théequent work on the three-body problem by Faddeev and
wave function of the electron in the long-ran¢@oulomb Lovelace[16]. All this work relied on a formalism that uses
field. MQDT is particularly well suited to the description and ingoing or outgoing asymptotic travelling waves, the corre-
interpretation of Rydberg spectra and autoionizing series. sponding invertible Green’s operatdts, and related tran-

Its original formulation[1] starts from a close-coupling sition T operators. A rearrangement collision formalism for
approach of electron ion scattering and extrapolates it fostanding waves in which standing-wave solutions are given
negative energies of the electron to the discrete spectrunas functions of the nonperturbed wave functions, principal
This formulation rests on an extensive analysis of the propvalue Green'’s operators”, and reaction operators was
erties of Coulomb functions. Later, in a series of papersnot, to our knowledge, fully developd@ut see[17], where
Fano and co-workers connected MQDT with the more genthe particular case of identical particle scattering for standing
eral approach to nonrelativistic quantum collisions based owaves was considergdThis was the case in part because
the Lippmann-Schwinger equation for standing wej\&s4].  standing waves do not have a direct physical interpretation
MQDT was still considered as an effective one-electronand also because the real operatofsare not invertible, a
theory but was generalized to include many other types ofact that complicates the task of directly defining reaction
long-range potentialé.e., other than CoulombSitill later, it ~ operators. Nevertheles¥ operators have been repeatedly
was shown that standard quantum defect theory could bstudied because of their usefulness as a source of unitary
seen as a straightforward application of WigneRsnatrix ~ approximations of th& matrix[18—20. In this context there
theory of resonance reactions to the case of an attractivere many equivalent manners of defining r&abperators,
Coulomb potential[5]. More recently, Rosenberg used an since a unitary scattering matrix is obtained via a Cayley
effective-potential formalism for electron-ion scattering to transform.
establish an extension of Levinson’s theorem connecting the In multichannel quantum defect theory, cloged., nega-
guantum defect and the phase shift relative to the Coulomkive energy channels are explicitly included in the collision
phas€g6]. matrices, making the use of standing waves necessary. In

There has also been repeated interest in reactive collisiotiheir cited works on ionization and dissociation of Juingen
types of processes, but these processes were not fully treatadd collaborators do not employ some rearrangement MQDT
within MQDT: electron-ion interaction called for an MQDT formalism. Instead, they assume certain relations between
treatment while other interactions where taken into accounthe asymptotic wave functions in each arrangement and carry
by combining the MQDT treatment with first- or second- out their calculations by connecting wave functions at some
order perturbation theorge.g., works on dissociative recom- boundary. In this work, we present a standing-wave formal-
binations[7] or on Rydberg-valence interactiof8]) or with  ism for nonrelativistic collisions with rearrangements. Mul-
R-matrix calculationg§9]. On the other hand, an analysis of tiarrangement MQDT will appear as a particularization that
predissociation in diatomic molecules and inelastic atontan be derived from the more general formalism. To this
scattering was formulated within a framework adapted fromend, we will study in Sec. Il the connection between standard
MQDT, where the outer electron is replaced by the relativeMQDT and the standing-wave Lippmann-Schwinger equa-
particle picturing the separating atoms and close couplingion for single-arrangement collisions, recasting the results of
refers to interatomic potential]40,11]; but then the dynam- Fano and co-workers in a form more suitable for multiar-
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rangement generalizations. In Sec. lll, we shall introduce oufurther demand the solution to be also a standing wave, we
rearrangement reaction operators by explicitly considerindiave the Lippmann-Schwinger equation for standing waves:
the form of the wave functions: the solutions are thus ob- b b b

tained without the need for a paradigm based on unitarity, as |4 (E))=[i(E))+ Co(E)V|gi (E)), 2.9

had been previously proposed by Kouri and Lepiid]. The L . .
K operators will be given as functions of real Green’s operay"her_e P stands for PrlnmpaIQ;/PaI_ue |ntegrat|9tr1, and the
tors and interaction potentials. In Sec. IV, by including Principal-value Green's operatol, is related toG, by
closed channels in the standing-wave rearrangement scatter- — .p, —\ _ ~+ -\ . TR -1
ing formalism of Sec. I, we shall introduce a multiarrange- Go(B)=Go (B)Timd(E=Ho)=P(E=Ho) "~ (2.9

ment multichannel quantum-defect theory; it will be illus- 5q g known, ¥ does not have an inverse and does not obey

trated by considering ionization and dissociation indhd e regolvent equation. Thus the analog of the right-hand

showing the connection between this work and the assume i :
ualities in EQqs(2.2) and(2.6) cannot be written for stand-
relations of Refs[12] and[13]. Methods of direct calcula- f% waves. Nec\l/e(rthe)less (by)defining

tions of the wave functions and related parameters will be
suggested. K=V+VGEV+VCEVEEV+---=(1-VGH) v,
(2.10
Il. FROM STANDING-WAVE COLLISIONS TO MQDT

which can be simply put as
A. Lippmann-Schwinger equations

— (P
We shall consider in this section the Lippmann- K=VH+VEGoK, (2.13

Schwinger equation for the single-arrangement ¢ase ef-
fective direct collisions Let H be the total Hamiltonian of
the system given bid =Hy+ V. The time-independent solu- |yP(E)y=|#i(E))+CE(E)K(E)|#i(E)). (2.12
tions of Hy,

direct iteration of the LS equation E¢(R.8) yields

The i index specifies the channel: an initial nonperturbed
(E—Ho)|#i(E))=0, (2D wave in channel, |¢;(E)), gives rise to “postcollision”
Waveng(E)K(E) ¢i(E)), the total solution being then de-
noted| z/xf(E)). The P superscript for principal value and the
energy specification will be dropped from now on from state
vectors and operators and will implicitly be understood
throughout unless otherwise stated.

are supposed to be known while the solutionsHoft the
same energy, labeldd;;(E)) are looked for. The outgoing
and ingoing solutionky;" (E)) and|y; (E)) are given by the
Lippmann-SchwingefLS) equation§21,22

| (B))=[i(E))+Go (E)V]yy (E)) o
B. Derivation of MQDT

=|¢i(E))+G~ i . : ,
|4i(E)+ GH(E)V|4i(E)), 2.2 Multichannel quantum defect theory can be characterized
where the Green’s operator associated with the nonperturbdy three main points.

Hamiltonian is given by (1) System patrtitioningThe systenfatom or moleculgin
statei is partitioned in two parts: the core, whose state is
Go(E)=(E—Hg=xin) ! (2.3)  denoted|i *(E;")), and the effective outer electron. In the
) ) absence of the perturbing potentigl the radial states of the
and the propagator of the full interaction by outer electron are given bl (¢;)) and the orbital and spin
CE(E)=(E—H=*iN) L, 2.4 part by|w;), that we include with the core state in the com-

pound notatiori) to account for orbital and spin couplings.

The limit »—0 will be implicitly understood throughout. 1NuS the solutions ofi, are given by
These invertible operators fulfill the resolvent equations . .
P a | B(E)=Ifi(e)odli* (EN)=If)li), (213

where the radial degree of freedom of the outer electron
(r coordinate, has been separated, and the total energy has
been partitioned into the core energy (which is assumed
to lie within the bound spectrunand the outer electron en-

T(E)=V+VGS(E)T(E)=V+VGT(E)V (2.6 ergye:

GF=06g + G5 VG5 =64 +G=VG; . (2.9

It is then common to introduce a transition operator
given by

and insert it in the LS equations. For example, for the out- E=E +¢. (2.14

oing wave this yields . : .
going y The core state is supposed to be an antisymmetrized product

| (E))=|i(E))+Cg (E)T(E)| i(E)). (2.7  vanishing outside a core radiug. We will require|¢;) to
be zero atr =0, so|¢;) is then given by a standing wave
We have not yet stated the nature of the “free” stateregular at the origin.
|$i(E)) that is linked to the boundary conditions incorpo-  (2) Radial functions and Green’'s operatorg can be
rated in the Green’s operator. Henceforth we shall requirgositive (continuum electron corresponding to an ogén
|#i(E)) to be a standing wave, unless otherwise stated. If wehannel, €;= %kiz) or negative (“bound” electron, for a



PRA 59 STANDING-WAVE REARRANGEMENT SCATTERING . . . 2045

closed(C) channel,ei=—%;<i2); atomic units are being used. Because each core state has a definite endegycan be
In the MQDT framework, closed channels explicitly appearreduced, by using Eq2.14) and the closed-form expression
in the reaction matricegwhereas in standard scattering of the radial Green’s functiof2.15 to

theory the collision matrices include only the physically
open channels, the discrete levels appearing as papsn N et ,
and closed channels are treated on the same footing. This is (rGolr >_je{§+<:} [H(ENIE, )|g5]_(r,r ),
realized by defining smooth radial Green’s functions, that do (2.18

not present any singularities for bound states but diverge for )
€<0 whenr—. The boundary conditions at infinity are Where the sum runs on open and closed channels. With the

thus not included in these radial Green’s functions. Greend)elp of expression€.15 and(2.17) the LS equation outside
Fano, and Strinati have show8] that such radial Green's the core (>r,) takes the form
functions are defined by

2 (rlg)=g(n=F(Ol) =2 gi(NIHK(E). (.19
G (1) = Wi dr=)fir<). (219 J
a TheK;; are the on-the-energy shell elements of khepera-

wherer .. (r..) indicates the largetsmalled of (r,r’). When  tor:

the long-range field is simply Coulomib;(e;,r) is a Cou- . .

lomb function regular at =0 andg;(e; ,r) is irregular and Kji (E)=(f;(e)|(G(ENIKIIEN)fi(e)), (2.20
forms a radial basis with Bothf andg are normalized to the
energy. A standard choice is to dednd g as oscillating at
larger with equal amplitude and 90 degrees out of phfse

€>0) and with their WronskiaW,[f,g]=2/m. A straight-

forward consequence is that the Green’s operators used Es,ly projecting this last equation over a finite basis, g
MQDT, which will be notedG, are different from the glements can be found by solving the corresponding integral
Green'’s operatoré, of Egs.(2.8) to (2.12. It can be shown  equations on a coarse energy mésly.,[24]) or by adapting
that the Schwinger variational method to equations with smooth
radial Green’s functiong25,26). I? practice, theK matrix, or
- _ NS _ -1 related quantum defecjs;; ==~ arctarK; can also be de-
GolE)=ColE) 7TEi Ol i(E){hi(E)l(t@ns) ", termined fromR-matrix callculationi27] 0; by fitting to ex-
(216  perimental data or tab initio computationg28].
] ] ] Equation(2.19 is the generic building block of MQDT
where g; is the accumulated phase function measuring thgyaye functions. The total standing-wave function, denoted

Coulomb field of chargeZ, we have gi=m(v;—1;) and  \itn its channel coefficienB? :

tanB=tanmy;, wherev,=—2/«; is the effective quantum

number of the outer electrgnThe phase function can be

expressed simply in terms of the Jost functions of the long- z//”(r)zz i) Bf’fi(r)—z BYKijgi(r)|. (222
range potential extrapolated to negative energsee Ref. : !

[23]). O is the step function: the last term thus appears onl

for closed channels and cancels the possible singularities ﬁ-ihe‘o sgperscrlpt [I)abels t.h.e eigenstates of the open-ghannel
Co. interaction. TheB! coefficients are found by examining

asymptotic boundary conditions. For example, ionization
corresponds to incoming-wave boundary conditi29] for
the atomic casd,30] for the molecular caself we assume
V[r)y=0(r—rg)V|r). (2.17  thatthe final state corresponds to a measurement of the elec-
tron’s channel (basically its angular momentum and its cou-

This gives rise to the following physical picture: outside thePling with the ion’s angular momentunthen the final state
core, the outer electron only sees a long-range, centrallig Simply given by the solution of the LS equation,
symmetric local field, included withitd,. Inside the core B B
the electron has a complicated motion due to the noncentral i )=y +Co T 1), (2.23
and nonlocal interactions, but the translation of these short- N )
range effects outside the core amounts to inducing radiahhich can be set by Eq2.9) as a superposition of standing
phase shifts, th& operator elements, that are expected tovaves| i),
have smooth variations with the energy of the outer electron,
which is subjected far outside the core to a comparatively -\ _ i
weak long-range force. %) % Uyie e cosmry|,), (2.24

On the mathematical standpoint, we take the LS equation _
for standing waves, Eq2.12), choose a set of nonperturbed HereU diagonalizesI' andKK, €2 "7 being the eigen-phase-
channelgin practice a truncated 9aiven by the expression shifts of the(open-channglS matrix, and the eigenchannel
(2.13 with the Green’s operatoG, given by Eq.(2.16.  functions|y,) are given by

whereK is defined by

K=—7V+VGK. (2.20)

(3) Short-range interactionsThe interactionV is short
range, limited to the region inside the ion core radiys
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: . By introducing a set ofl' operators, the LS equations are
|l//p>:izo Ui, i) + GoK| )] (229 formally solved. For example, with
aa_\ja o trraa _—\ja aty\/a
Then by imposing/*(r)—(r|¢,) in the limit r —o, we THE=VEFVEG, TH=VERVIECTY @4
get by matching Eqs(2.22 and (2.29 the following rela-

tions for closed and open channels: the outgoing LS equatiofB.2) takes the form

W)= da)+ T ) (3.5
ieC, Bf+ X BK;(tang) =0,
je{O+C} It is straightforward to get cross-arrangement transition
BP— Ul operators such thdﬂg’ﬂ’ﬁ“=(};1‘““ by simply using Eq.
- ' e (3.3). The well-known result is
10,
B BT T2, Uk = e, BV VATV, (3.6
(2.26 . .
It is also recognized th&f?* and
which is the usual MQDT system that can be solved in a o
standard mann€lrl], so as to get the values of the phase TPa=VE+ VPGV« (3.7

function B; corresponding to the physical bound-state ener-
gies, as well as the eigen-phase-shiffsand theB? coeffi- have the same on-the-energy shell elements but do not obey

cients. the same LS equation, since
We have not yet included explicitly the antisymmetry re- Sy e oag e
quirement. Let us consideN identical particles, i.e., the |‘/’ai>=')‘GB|¢ai>+GﬁTﬂ |¢’ai>- 3.9

outer electron of coordinatecolliding on an ion containing ) )
N—1 electrons. Then the formulas given above in this sub- The standing-wave analog of E.2) is

section hold whelK is replaced by Y=o )+ GV, ) 3.9

Ker= = m(I =(N=1)Pyn-1)V+VGoKer, (2.27) o
Then direct iteration leads to

wherePy n—1 IS @ permutation operator exchanging tith
with the (N— 1)th electron. The derivation of E.27) fol- [0) = ba)+ CaK*| by, (3.10
lows closely from the standard approach employed in scat-
tering theory:N different arrangements have to be consid-With
ered, each one corresponding to a different outer electron, = i van—1 s —1r s
Since standing waves and related operators replace the morg” = VI VICRIE=VAI =GV 2= (1=VEG,) 7V
usual traveling waves, the demonstration follows from our (3.19
results of Sec. Ill and is briefly outlined in Appendix A. We p ¢ there is no analog for standing-wave reaction operators to
will not explicitly deal with antisymmetrization in the rest of i |55t equalitythe formal solution for thél' operators of

the paper since the form of the equations are not modifiedzq (3.4). Yet it can easily be established that the principal-
But obviously, antisymmetrization has to be taken into acyajye Green’s operator of the full interactidh, is related to

count when calculating the reaction matrix. the « arrangement Green's operatoy, by

Ill. REARRANGEMENT COLLISION FORMALISM G=(1—6 V%) YC,+R,)=(Cut+R,)(1—VC,) L,
FOR STANDING WAVES (3.12

W_hen_we consider rearrangement COI.“S'OHS' the tota\'/vhereRa andR, are “rest” terms, which are not present in
Hamiltonian of the system is partitioned in several ways,

each of them corresponding to a given arrangement of thgq' (3.3), and are found to be given by

system: R,=—m28(E—H,)V*S(E—H)=— 728, V*5,
H=H,+V*=Hgz+VF=-.. (3.0 (3.13
|¢.,(E)) is an eigenstate dfl,,; |, (E)) is the solution of R,=—m?S(E-H)V*S§(E—H,)=—m?6V*5,,. .
H corresponding to an “initial” nonperturbedstate(chan- (3.19
ne) in arrangementr. The ingoing and outgoing wave LS \we are now looking for a cross-arrangement reaction op-
equations are well known, eratorkKA* such that
|2 (B))=a(ENF+CL(E)Vyr (B)), (32 (K= gKAe, (3.19

where the Green’s operatots, = (E—H,=i\) ! obey the  This useful relation allows to write the LS equatit®10

resolvent equation€.5) that can be set here as for an initial nonperturbed wave in arrangementn terms
- I S of the Green’s operator in arrangemghtind of the cross-
C="HE)=C, *=V*=Gz; '=VF=---. (3.3  arangement reaction operatb’® whose expression we
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now derive by taking the right-hand equality of BE®.11) IV. MULTIARRANGEMENT MQDT
and the relation$3.12 successively, we get A General remarks
G K =G g(1 = VAG ) ~tve We have derived in the last section a formalism for colli-
N — e sions with rearrangement for the standing-wave type of wave
LU =GVP) " Rg—R,(1=V*G,) " IV} functions. We have seen in Sec. Il B how multichannel quan-

(3.16  tum defect theory follows from the general formulation of
standing-wave scattering. We then expect multiarrangement

Now from Egs.(3.3) and(3.12 we deduce MQDT to follow in a straightforward manner from the re-
sults of Sec. lll. This is done so by setting the multi-
8u=(1+GV)T18(1=VG,) = (1 =G,V &1 +VQG()3717) arrangement MQDT Green’s operator in arrangenmeas
. . G,=G,—P,, 4.1
and use this relation to show that the terms between brackets
in Eg. (3.16 can be set as where

—7?(1 = GgVA) " H o4 VE-VY) 5 K, (3.1
(176524 )0d} (.18 P(E)=72> O(—e)(tang,) ¢, (E)) ¢, (E)l
which vanishes becaus¢#’—V*=H ,— H is projected onto ' 4.2
states corresponding to different arrangements but having the '
same energy. We have then found an oper&ftt that can  “projects” on the closed channels in arrangemerdnd acts
be set, following Eq(3.16 and iterating once as in a similar way to theS(E—H,) type of operators. It is not
KBa— (1 =BG )~ V= Ve + VBG JKBe (3.19 to be confused with the principal value symbol, although
- B - B ' addition of this term td>, cancels the closed-channel singu-
Notice thatT# can also be written in a similar form, but !arities and thus acts simila,rly to the principa_l value symbol
KA cannot be formulated like Eq3.6). In fact, from Egs. ™ the open-channel Green’s operator. Hig is the accu-
(3.19 and(3.12 we see that mulated phase function, introduced in Eg.16 above, for
the arrangement. Note thatP, vanishes in the absence of
KBa=\vat vAGVa—VA(| —GBVB)*lRﬁV“- (3.20 closed channels.
The next step is to replace, in E(B.11), the operators
We can also display an operatt®* having the same G,, R,, andR, by G,, R,, andR,,, given, respectively,
on-shell elements a&”* and related t&k”®, as in the case by Eq.(4.1) and

of the T operators byKP*=KA*+VA—V* Then it may be

— a2 a
shown that R,=P, (I +V*G)—m7°8,V*6, 4.3
KBr=VA(I -G V) " 1=VA+ KPoG Ve, (3.20) Ro=(1+GV)P,—726V*s, . (4.4
It is interesting to note that the LS equation withe, given | e by defining
sinceC(V/ =V da) =) by Ke®= — 7~ ot VG K* = — (1 —V*G,) 1V
= (4.5
[, ) =G pKP b ) (3.22

we are led to the analog of E¢3.16):

has only a homogeneous term. The infinitesimal term appear-g gee= _ ;G (1=VAG 5) " Ve— m{[ (1 - G,VF) R
ing in the LS equations for traveling wavésee Eq.(3.8)] “ F P p p
that was in question ever since the early works on rearrange- _Ea“ —VeG,) v (4.6)
ment collisions theory{31] does not appear for standing
waves. There does not seem to be any inconsistency in thidow by using Eq(3.17 and further demonstrating that
latter case, precisely because the principal-value Green’s op-
erators are not invertible. Gp(VE=V*)P,=Gg(VF-V*P,=P, 4.7)
Half-on-shell integral equations are readily derived from
the expression$3.19 or (3.21), thus avoiding recourse to
the damping equation and related unitarity arguments, as h
been done previously in the case of the scattering of twd
identical particles[17,32 (identical particle scattering is
considered in Appendix A As usual in rearrangement scat-
tering, K is the matrix of the whole set of same-arrangement KBo— _ an_l_VlBGBKIBa_VﬁPBK‘Ba, 4.9
and cross-arrangement operators. It can be checkedk fftat

is Hermitian, and that relations of the type’®"=KA% lead  where« and 8 label different or identical arrangements. The
to a symmetric on-shelk matrix for real potentials. More- solution of the total Hamiltonian corresponding to a nonper-
over, these results can be extended in a straightforward maturbed wave in arrangemeatand channel,| ¢, ,), is given
ner when more than two arrangements are considered. by one of the equivalent expressions

the braces in Eq4.6) are seen to vanish, so that the results
Sec. Il hold (with the conventional-# factor added in

e definition of the reaction operators

We then conclude that the reaction matrices are obtained
by solving the operator equation
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|¢ai(E)>:|¢,ai(E))_ W_lGa(E)KW(E)Wai(E)), processes involving diffe_rent arrangements, that are here the
(4.9 two pc_>33|ble fragment:_;ttlon ways ohbH
As in Ref.[12], we will suppose that the molecular energy
is below the threshold for dissociative ionization, and that
dissociation is correctly described by the sole covalent con-

) ) figuration H(1s)+H(nl). Then the particles may gather in
and the solution off corresponding to a nonperturbed wave yo different arrangements: | for ionization, describing

in arrangemeng and channej is given in terms °f¢ﬁj> by e —H;} asymptotic stategr radial coordinate as well as
scattering of negative energy electrons giving rise to the
|¢,ej(E)>:|¢31(E)>—Tf*lGﬂ(E)KBB(E)WBj(E)) bound states of i and D for dissociation, that is,
(4.1) H(1s)-H(nl) scattering(R coordinat¢. The Hamiltonian is
consequently partitioned a$=H, +V'=Hp+VP.
or The Hamiltonians and the coupled and uncoupled wave
o functions in thel arrangement have been repeatedly used
|¢5j(E)>=—w‘lGa(E)K“[”(E)wﬁj(E)). (4.12  [34,28,33 and will not be given here. Sinc|e/>|i>z|fi>|i>
only include bound states of the ion, we shall require the
For simplicity we consider here only two arrangements. Thevibrational functions to be boundef.e., (R|¢|i):0 for

|0, (E))=— 7 'G4(E)KP*(E)| ¢, (E)), (4.10

total wave function is then the superposition largeR).
For the D arrangement, we will take the Born-
|l//p>=2i Bﬂ%i)Jr; Bﬂ'/’ﬁj)’ 4.13 Oppenheimer(BO) approximated HamiltonianHy then

contains the electronic and rotational Hamiltonians, as well

as the kinetic term of the vibrational Hamiltonian, whit@
which can be seen as a consequence of the orthogonality afcludes the internuclear interacti®i *, the electronic en-
the Hilbert spaces spanned by the states that develop froergy and the constant termVP(R—%)=3(1+n"2). The

different initial channels. eigenstates oflp are set as
The reaction matrices can be calculated by coupled inte- el rot
gral equations from their definitions in terms of the interac- (Rl¢p ) =Fa(R)|dg)|dg)=Fu(R)|d),  (4.14

tion potentials and the principal value Green'’s operators. The
coefficients are determined by matchihg’) to asymptotic
open-channel functions. As in Sec. Il above, iheuper-
script has been introduced to anticipate the manifold o

standing waves corresponding to a given physical process. . . ; )
g P g g Pny P tained from coupled integral equations. There are different

For definiteness, this will be illustrated below on a spe- ) ) .
manners of setting up the numerical problem, depending on

cific example. Since in most problems approximate Hamilto- "' , , . .
nians are used, we don't expect the equality between quvhmh technique is use@hese are described, for example, in

(4.9) and(4.10 to hold exactly. Rather Eq¢4.9) and(4.10 the review paperg36,37 and references thergirEmploying

will alternatively be used in different domains where the ap-2 formulation with half-on-shell integral equations drasti-
proximations introduced in the Hamiltonians have a sense. lly reduces the dimension of the linear system to be solved,
the disadvantage is then that a new system has to be set up

o ) o for different energies. Briefly, to calculate the on-shell ele-
B. lonization and dissociation in H, mentsKgF"a_(E,E)=<¢>Bi(E)|K/3a|¢a_(E)> where the greek
H, has always been the prototype of the application ofieters and 3 stand forl or D and the lowercase latin letters
MQDT to molecular problems. Although dissociation relatedj and | label the channels, Eq4.9) is taken half-on-shell
effects were studied by combining MQDT with a perturba—beMeerK¢Bi(Eni)| andlqbaj(E)). The Green’s operatdi

tI\L/J?JIizLeR;Jrqﬁtixhiaéﬁ)]pI:iﬂ#iSég], ?ngtl;?nc%lrgpéc\;v?ﬁeirw?r”(;at-is replaced by its eigenfunction expansion over a truncated
P : : ed q y set of channels; thus half-on-shell reaction matrix elements
ment is carried oufl12]. This treatment was then used as a

base for the study of wave packdik3]. Notwithstanding, appear. Thé ,(E) operator, as given by E¢d.2), gives rise

Junaen and co-workers do not exblicitly use some e uivaler;[ on-shell matrix elements. The following equation between
9 plicrtly q atrix elements is obtained:

of multi-arrangement MQDT. They determine an effective

total reaction matrix by assuming the form of the asymptotic

wave functiondsee their Eq(1) in both articleg while con- Kg.aa.(En»,E):Vﬁ.a.(En-,E)
sidering two types of wave functions, inngor small inter- R R

where 74(R) is a(standing free function regular at the ori-
gin (sine type and G4(R) is the irregular companion.
As stated, the reaction matrices may, in principle, be ob-

nuclear distancd?) and outer(large R) dissociative func- Vﬁ.ﬁ (En.Epn)
tions, the parameters being found by matching these +2 J O K
functions at some boundary. Our aim in the following is not ko Jne €k €ny

to conduct practical calculations of a definite process involv-

ing both ionization and dissociation—the problem will be > O(—e)ltanBs (E)] 71
tackled elsewherg33]—but rather to give an illustration of k k

the standing-wave formalism, i.e., how a multiarrangement
guantum defect theory may, in principle, be used to treat

Ba
K:Bkaj(Enk’E)

xvgiﬁk(Eni,E)Kgsaj(E,E). (4.15
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A quadrature, symbolized bj/nk, has been imposed on this r .
equation: the principal part integration over positive energies £l ‘,:g"’K"’i|’>
and the formal sum running over all the discrete negative .
energies for each chanrilein the arrangemens are replaced ;gf'K"’“ 7
by the sum over the quadrature poirﬁg,k [or equivalently

€n, by a suitable generalization of E@.14)]. E, is thus one

of the quadrature points, corresponding to a given energy in
channel. By matching the energl to one of the quadrature
points, Eq.(4.15 leads to the following matrix equation:

Rld)

7’
I' '/' ZGwK%id'>
N dr

)
X6 KLl
— — — — a’

KF*(E)=V{(E)+V,KF(E)+ VKP4 E), (4.16 R, R

FIG. 1. The arrows picture the different terms of the wave func-
whereV; (V;) is the matrix corresponding to the secondyion in the radial coordinatéR for the nuclei,r for the electron
(third) term of the right-hand side of E@4.15. As denoted  pjane, that are valid outside the cdie gray). The solid lines rep-

by the arrow, KB“ is a vector containing theth column of ~ resent/¢; ) and the dotted lines represeuf ).

the half-on- shell reaction matrb’(gaa ; if g; is the total num- ,

i change the form of the equations nor the structure of the
ber of quadrature points for chaﬂge{nd the total number of linear system, although it does complicate the calculation of
channels is labeled b, then Kjﬁ“ contains=}_,q, ele-  the potential matrix elements.
ments. Equatiori4.16 may be set as Now, taking Egs.(4.9) and (4.11) with a=1 and 8=D

and reducing the Green'’s operators to on shell radiat R)

— —~ Green'’s functions as in Sec. Il leads to
[1-VIKF“(E)=V{(E). (4.1

rlyn)=fi(r)]] Egu iKi, >,
To solve the system, the matri is first calculated at the oy )~ . Ki °
selected energf (although onlyV, and a small submatrix (4.18

of V; explicitly depend onE). The inhomogeneous term
V“(E) is then determined, and the system is solved for the (R[#p )=F4(R)[d)— E Ga(R)[d’ )Kdd,, R>R,.
jth column ofK o by an appropriate method. For example, 4.19

the linear algebralc method developed by Collins and
Schneidef38,39 combines an iteration process with a varia- where K“, and K d, are the on-the-energy shell matrix ele-
tional scheme and is well suited to solve a large system ofnents of the same-arrangement reaction operdforsex-

linear equations; moreover, it has successfully been applleqtmmeK (E)=(¢, (E)|K"(E)| ¢, ,(E))]. From Egs(4.10
within a different theoretical framework, to electron scatter- and (4.12 we get expressions with the cross-arrangement

ing from Hy. The other columns of( are solved by .o tion operators

calculating the corresponding mhomogeneous vector and by .
using the same potential matri. In a final step, the on- Rl¢ )=—7YR|GpKP'| ¢, )
shell elements of the reaction matrix are recovered. Note that ' '
in all cases theY matrix only contains same-arrangement
potential elements, and thi¥enters in the computations of - _E Gar(R)[d’ >Kd i» R>Ro, (4.20
both same-arrangement and cross-arrangement reaction ma-
trices: the cross-arrangement interaction is only explicitlyand
calculated to the first orddthis is a direct consequence of o
the propagator property of the Green’s operators (rlpp y=—7"Xr|G K| pp )

Details of the calculations and different methods of ap- ¢ ¢
proximation will be discussed in a future paper. Here, three . —1b
remarks are in order. First, when the outer electron is within = _Z g (N[INKg, r>ro. (4.2
the reaction zone, the Born-Oppenheimer approximation !
holds also in thd arrangement, and the free channel func-Notice that because the reduction of the Green’s operators
tions| ¢, ) may accordingly be expanded as BO functions viatakes the simple MQDT form only when the perturbation
a rotat|onal and vibrational transformati¢@8]. The same potentials vanisiir >rg or R>R,) the expression&.18 to
holds for the Green’s operatds, . Second, working with (4.21) are only valid in definite regions of théR,r) plane
reaction matrices that include closed channels and “smooth’tepresented in Fig. 1. As usual, within MQDT the wave
Green’s functions, and with energy-normalized radial func-function inside the core is not known; the physical core de-
tions is expected to reduce the size of the energy mesh. Fiined by bothr <ry andR<R; is gray dashed on the figure.
nally, we have not explicitly included the antisymmetry re- The solid lines represent Eqgl.18 and(4.20, that we can
guirements in the potential matrix elements of Egs15—  think of as the scattered waves from an initial nonperturbed
(4.17); as advanced at the end of Sec. I, doing so does naitate|f;)|i), including exponentially diverging functions for

0(
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closed channels. The dotted lines represent an initially non-

perturbed statéF4)|d) in the D arrangement scattering into
other dissociation waves, E@.19, or into | arrangement
waves, Eq(4.2)).

The total wave function is accordingly given by Eg.
(4.13. For r>ry it is convenient to use Eqg4.18 and
(4.2 since(r|G, is known (and for R>R, the other two
pairg. The following expressions are obtainesith the on-

shell equalitie |, =Kig, andKg),=Kg)):
W= S |i>[Bffi<r>
ie{lot+lp}
—{2 B{’,K}',ﬁ% BY KD, gi(r)], r>ro,
1
(4.22)
|
iele, > BKI+
i"e{lo+ic}
—_1nt
Bip_Uip'
ielo, > B°Kl+ X BYK
i"e{lo+ic} d'"eD
Bs=Ul,.
D
deD, | 3 BrkPo+ 3 Bk
d’ eD i"eflotich

A. MATZKIN
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UL

DD
Kd’d

—{2 B, KL+ B{’,Kgi',}gd(R)], R>Ry.
d’ i’

(4.23

In a final step, these two equations are matched to the
standing-wave decompositions of ingoing ionization and in-
going dissociation functions. The basic idea is the same as in
the single arrangement problem of Sec[dée Eqs(2.23—-
(2.26)] although the calculations are a bit more involved: for
eachp, there are now not one, but two eigenchannel func-
tions (one per arrangementhat have both the same phase
shift (see Appendix B Since we are considering both closed
(Ic) and open [p) channels in thé arrangement and only
open channels in thB arrangement, the result is

> B,KD +Btang=0,

d"eD

D _ t_ ot (4.29
id’ — 7TjE{§+D} IKijUjp—Uiptan'ﬂTp,

DI

- z ]Kd-U-Jr =U$ tanwr_,
(S i~ip p P

whereK;; are the elements of the open channels physical fultext, although it has been known for quite a long tim#, 32

reaction matrix with eigenvalues w_ltanﬂ'rp, composed
with the blocksk", K'P, KP' andKPP; —#K is related to

the total S matrix by a Cayley transform. Herg diagonal-

that such a direct transposition for infinite-order expressions
may lead to errorgas seen in Sec. lll, the relations for trav-
elling wave equations and collision operators do not always

izesS. We are thus led to solving a system similar in form to hold for standing wavgs

the well-known typical MQDT system. The bound-state en- By examining the relation between MQDT and the
ergies as well as the eigenphaseshiffsof the (ionization  Lippmann-Schwinger approach, we have then derived a for-
and dissociationopen-channel interactions are found first; malism for standing-wave rearrangement scattering with the
then, for eachp, the B? coefficients are determined at the explicitinclusion of closed channels. The methods of MQDT
energyE of interest. As expected, the values taken by thehave by now far outpassed their original domain of atomic
phase function in thearrangements; , now also depend on quantum defects, and since the formalism of Sec. IV extends
the waves scattered from tie arrangement. these methods to rearrangement scattering, the theory may be
seen as a multiarrangement MQDT. Besides giving a formal
basis for ongoing research, the development of a multiar-
rangement quantum-defect theory concurs with current

. . . . works concerned by the connection of different theoretical
In this article, we have first developed a standing-wave

. R : approaches to treat problems involving simultaneous mo-
rearrangement scattering formalism in which the wave func’[ions of the nuclei and of an outer electron in diatomic sys-
tions are given in terms of same-arrangement and cross:
arrangement reaction operators. A few works using standing
waves in reactive collisions have been done in the (mst,
[40]), but the specific characteristics of standing-wave opera-
tors were not taken into account: the expressions valid for | would like to acknowledge discussions with Ch. Jungen,

traveling waves were employed in the standing-wave conM. Raoult, and A. Suzor-WeingOrsay.

V. CONCLUSION
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APPENDIX A: ANTISYMMETRIZED REACTION Although the operators here are initially defined on the
OPERATOR asymptoticl arrangement Hilbert space, we can envisage
them as defined on the super Hilbert space, which is the
Ydirect sum of the asymptotic spaces, on which the total col-
lision matricesS or T are defined. Then there is a unitary
H=H;+V;=Hy+Vy=---=Hy+Vy, (A1)  matrix U that diagonalized, so thatT™' can be expressed
) o ) o . with the eigen-phase-shifts &, allowing for the introduc-
where the index indicates which electron is initially collid- tjon of the differentk operators. After some algebraic ma-

ing. Suppose that th&lth electron, in staté collides on nipulations and with the help of E¢2.9), Eq. (B1) is set as
the core represented by the antisymmetrized producy superposition of standing waves:

i*(rq,...,rn—1). Then in the notation of Sec. IV A the solu-
tion is given by |¢ﬁ>: > U,ie ™ COSWTqup) (B2)
[y =) — 7 GNKNN By ), (A2) ’

We consider an electron colliding on a target containin
N—1 electrons. The Hamiltonian is partitioned following

where N labels the arrangement and we shall (adtszi) with
=fi(ry)lin)- [ )= UL+ X ULCK" )
As known, when antisymmetrizing, we only need to con- telo telo
sider theN—1 permutationsPy ,, (ye{1,... N—1}) that
do not leave the core unchanged. The antisymmetrizer is + > U(EPG|]K'D|¢Dd>. (B3)
then given up to a normalizing constant by deD

N~1 Then by reducing the Green’s operator, and sikcalso
A=1-2, Pn,y (A3)  diagonalizes the total reaction matrdk with diagonal ele-
r=1 ments— 7~ *tanr,, we obtain

and the antisymmetrized solution.ig ‘/’Ni>' With the help of

= U [fi(r)—t (). (B4
the key Eq.(3.15 and by reducingsy, we get forry>r, (rln,) i;o DU —tana7,6(n]. - (B4)

<rN|AGNKNN|¢N_)=w2 g;i(ra)liny The same rgasor]ing gives the de_composition of the state
: ] vector of the dissociated fragments in chanael
e N |, =1¢p,)+Co TP dp ), (B5)
X<¢Nj| KNN— > Py,,K” |¢Ni>- _ ,
r=1 into standing waves
(Ad)

_ o _ |¢D9>=Z ng|¢Dd>+2 ngGDKDD|¢Dd>
We further take into account the finite spatial extent of the d d
core, so that fory>ro we have(ry|Aléy)=Ti(ry)lin),

and finally +i2| Ul CoKP'[¢.) (B6)
€lo

(ralA| ¢Ni>:fi(rN)|iN>_E gj(rN)le><¢Nj|Keff|¢Ni> and by reducing>p
i

(A5)
(Rlpo,) =2 |d)UG,[Fa(R) ~tan77,Gu(R)].  (B7)
whereK is given by the expression between brackdtin

Eq. (A4). It can easily be shown that, when calculating ma-Ngtice that unlike the case of dire¢single-arrangement

trix elements K can be set as scattering, there are now two distinct eigenchannel functions,
K= KNN— (N—1)Py_ 4 yKN "IN (A6) |¢|p> and|¢Dp), but they both have a common phase shift
' [compare Eqgs(B4) and (B7) with Eq. (1) of Ref.[12]].
=—7(l =(N=1)Pn-10)Vn+ VNGrKeir - (A7) Now the total wave function, Eq4.13), is easily matched

to Eq. (B4) whenr—« andto Eq. (B7) when R—x by

In fact, since we may consider tligr,) to be orthogonal to gstablishing the following relations:

any core function, the expressions can be further simplifie L oL
when calculating the matrix elements of the reaction operat! |GIK- —— (r[G/K-—=

r—oo

tor.
x 3 e(=e)tang) (i) K
APPENDIX B: MULTIARRANGEMENT MQDT te{lo*lp}
BOUNDARY CONDITIONS IN | +D SCATTERING (B8
The state vector of an ionized electron in channé  WhereL stands forll or ID, and the trivial equality
given by the ingoing wave, (RIGo=(R|Cp. (89)

|wﬁ>=|¢'i>+GrTTll|¢'i>' BL  This yields the system given in E(4.24).
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