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Standing-wave rearrangement scattering formalism for multiarrangement quantum-defect theory

A. Matzkin
Laboratoire Aime´-Cotton du CNRS, Universite´ de Paris–Sud, 91405 Orsay, France

~Received 17 August 1998!

Nonrelativistic time-independent quantum scattering theory for collisions with rearrangements is investi-
gated for standing-wave solutions, principal-value Green’s operators, and related reaction operators. The so-
lutions corresponding to different arrangement configurations are obtained directly from the properties of the
noninvertible Green’s operators, without having recourse to arguments based on unitarity. By casting multi-
channel quantum defect theory~MQDT! as a particular case of standing-wave scattering, a formalism for
multiarrangement MQDT is presented and methods for calculating the wave functions and reaction matrices
are proposed. The formalism is illustrated in connection with current work on ionization and dissociation in
H2. @S1050-2947~99!07003-1#

PACS number~s!: 03.65.Nk, 34.10.1x, 31.50.1w, 34.50.2s
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I. INTRODUCTION

Standard multichannel quantum-defect theory~MQDT! is
concerned with the dynamics of an outer electron moving
the Coulomb field of an ionic~usually atomic or molecular!
core. The short-range interactions within the ion core ind
phase shifts, known as quantum defects, that modify
wave function of the electron in the long-range~Coulomb!
field. MQDT is particularly well suited to the description an
interpretation of Rydberg spectra and autoionizing series

Its original formulation@1# starts from a close-coupling
approach of electron ion scattering and extrapolates it
negative energies of the electron to the discrete spectr
This formulation rests on an extensive analysis of the pr
erties of Coulomb functions. Later, in a series of pape
Fano and co-workers connected MQDT with the more g
eral approach to nonrelativistic quantum collisions based
the Lippmann-Schwinger equation for standing waves@2–4#.
MQDT was still considered as an effective one-electr
theory but was generalized to include many other types
long-range potentials~i.e., other than Coulomb!. Still later, it
was shown that standard quantum defect theory could
seen as a straightforward application of Wigner’sR-matrix
theory of resonance reactions to the case of an attrac
Coulomb potential@5#. More recently, Rosenberg used a
effective-potential formalism for electron-ion scattering
establish an extension of Levinson’s theorem connecting
quantum defect and the phase shift relative to the Coulo
phase@6#.

There has also been repeated interest in reactive colli
types of processes, but these processes were not fully tre
within MQDT: electron-ion interaction called for an MQD
treatment while other interactions where taken into acco
by combining the MQDT treatment with first- or secon
order perturbation theory~e.g., works on dissociative recom
binations@7# or on Rydberg-valence interactions@8#! or with
R-matrix calculations@9#. On the other hand, an analysis
predissociation in diatomic molecules and inelastic at
scattering was formulated within a framework adapted fr
MQDT, where the outer electron is replaced by the relat
particle picturing the separating atoms and close coup
refers to interatomic potentials@10,11#; but then the dynam-
PRA 591050-2947/99/59~3!/2043~10!/$15.00
n

e
e

r
m.
-
,
-
n

n
f

be

ve

e
b

on
ted

nt

e
g

ics of the electrons was of no concern. Only recently w
works published in which ionization and dissociation a
treated within a unified MQDT formulation@12,13#.

Apart from this, the theory of nonrelativistic rearrang
ment collisions has been known for quite a long time sin
the early papers of Lippmann@14# and Ekstein@15# and sub-
sequent work on the three-body problem by Faddeev
Lovelace@16#. All this work relied on a formalism that use
ingoing or outgoing asymptotic travelling waves, the cor
sponding invertible Green’s operatorsG6, and related tran-
sition T operators. A rearrangement collision formalism f
standing waves in which standing-wave solutions are gi
as functions of the nonperturbed wave functions, princi
value Green’s operatorsGP, and reaction operatorsK was
not, to our knowledge, fully developed~but see@17#, where
the particular case of identical particle scattering for stand
waves was considered!. This was the case in part becau
standing waves do not have a direct physical interpreta
and also because the real operatorsGP are not invertible, a
fact that complicates the task of directly defining reacti
operators. Nevertheless,K operators have been repeated
studied because of their usefulness as a source of un
approximations of theS matrix @18–20#. In this context there
are many equivalent manners of defining realK operators,
since a unitary scattering matrix is obtained via a Cay
transform.

In multichannel quantum defect theory, closed~i.e., nega-
tive energy! channels are explicitly included in the collisio
matrices, making the use of standing waves necessary
their cited works on ionization and dissociation of H2 Jungen
and collaborators do not employ some rearrangement MQ
formalism. Instead, they assume certain relations betw
the asymptotic wave functions in each arrangement and c
out their calculations by connecting wave functions at so
boundary. In this work, we present a standing-wave form
ism for nonrelativistic collisions with rearrangements. Mu
tiarrangement MQDT will appear as a particularization th
can be derived from the more general formalism. To t
end, we will study in Sec. II the connection between stand
MQDT and the standing-wave Lippmann-Schwinger eq
tion for single-arrangement collisions, recasting the result
Fano and co-workers in a form more suitable for multia
2043 ©1999 The American Physical Society
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2044 PRA 59A. MATZKIN
rangement generalizations. In Sec. III, we shall introduce
rearrangement reaction operators by explicitly consider
the form of the wave functions: the solutions are thus
tained without the need for a paradigm based on unitarity
had been previously proposed by Kouri and Levin@17#. The
K operators will be given as functions of real Green’s ope
tors and interaction potentials. In Sec. IV, by includin
closed channels in the standing-wave rearrangement sca
ing formalism of Sec. III, we shall introduce a multiarrang
ment multichannel quantum-defect theory; it will be illu
trated by considering ionization and dissociation in H2 and
showing the connection between this work and the assu
relations of Refs.@12# and @13#. Methods of direct calcula-
tions of the wave functions and related parameters will
suggested.

II. FROM STANDING-WAVE COLLISIONS TO MQDT

A. Lippmann-Schwinger equations

We shall consider in this section the Lippman
Schwinger equation for the single-arrangement case~i.e., ef-
fective direct collisions!. Let H be the total Hamiltonian of
the system given byH5H01V. The time-independent solu
tions of H0 ,

~E2H0!uf i~E!&50, ~2.1!

are supposed to be known while the solutions ofH at the
same energy, labeleduc i(E)& are looked for. The outgoing
and ingoing solutionsuc i

1(E)& anduc i
2(E)& are given by the

Lippmann-Schwinger~LS! equations@21,22#

uc i
6~E!&5uf i~E!&1G0

6~E!Vuc i
6~E!&

5uf i~E!&1G6~E!Vuf i~E!&, ~2.2!

where the Green’s operator associated with the nonpertu
Hamiltonian is given by

G0
6~E!5~E2H06 il!21 ~2.3!

and the propagator of the full interaction by

G6~E!5~E2H6 il!21, ~2.4!

The limit l→0 will be implicitly understood throughout
These invertible operators fulfill the resolvent equations

G65G0
11G0

6VG65G0
11G6VG0

6 . ~2.5!

It is then common to introduce a transition operatorT
given by

T~E!5V1VG0
1~E!T~E!5V1VG1~E!V ~2.6!

and insert it in the LS equations. For example, for the o
going wave this yields

uc i
1~E!&5uf i~E!&1G0

1~E!T~E!uf i~E!&. ~2.7!

We have not yet stated the nature of the ‘‘free’’ sta
uf i(E)& that is linked to the boundary conditions incorp
rated in the Green’s operator. Henceforth we shall requ
uf i(E)& to be a standing wave, unless otherwise stated. If
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further demand the solution to be also a standing wave,
have the Lippmann-Schwinger equation for standing wav

uc i
P~E!&5uf i~E!&1G0

P~E!Vuc i
P~E!&, ~2.8!

where P stands for principal value integration, and th
principal-value Green’s operatorG0

P is related toG0
6 by

G0
P~E!5G0

6~E!6 ipd~E2H0![P~E2H0!21. ~2.9!

As is known,G0
P does not have an inverse and does not ob

the resolvent equation. Thus the analog of the right-ha
equalities in Eqs.~2.2! and~2.6! cannot be written for stand
ing waves. Nevertheless, by defining

K5V1VG0
PV1VG0

PVG0
PV1¯5~ I 2VG0

P!21V,
~2.10!

which can be simply put as

K5V1VG0
PK, ~2.11!

direct iteration of the LS equation Eq.~2.8! yields

uc i
P~E!&5uf i~E!&1G0

P~E!K~E!uf i~E!&. ~2.12!

The i index specifies the channel: an initial nonperturb
wave in channeli, uf i(E)&, gives rise to ‘‘postcollision’’
wavesG0

P(E)K(E)uf i(E)&, the total solution being then de
noteduc i

P(E)&. TheP superscript for principal value and th
energy specification will be dropped from now on from sta
vectors and operators and will implicitly be understo
throughout unless otherwise stated.

B. Derivation of MQDT

Multichannel quantum defect theory can be characteri
by three main points.

(1) System partitioning. The system~atom or molecule! in
state i is partitioned in two parts: the core, whose state
denotedu i 1(Ei

1)&, and the effective outer electron. In th
absence of the perturbing potentialV, the radial states of the
outer electron are given byu f i(e i)& and the orbital and spin
part by uv i&, that we include with the core state in the com
pound notationui& to account for orbital and spin couplings
Thus the solutions ofH0 are given by

uf i~E!&5u f i~e i !&uv i&u i 1~Ei
1!&[u f i&u i &, ~2.13!

where the radial degree of freedom of the outer elect
~r coordinate!, has been separated, and the total energy
been partitioned into the core energyEi

1 ~which is assumed
to lie within the bound spectrum! and the outer electron en
ergy e i :

E5Ei
11e i . ~2.14!

The core state is supposed to be an antisymmetrized pro
vanishing outside a core radiusr 0 . We will require uf i& to
be zero atr 50, so uf i& is then given by a standing wav
regular at the origin.

(2) Radial functions and Green’s operators. e i can be
positive ~continuum electron corresponding to an open~O!
channel, e i5

1
2 ki

2! or negative ~‘‘bound’’ electron, for a
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PRA 59 2045STANDING-WAVE REARRANGEMENT SCATTERING . . .
closed~C! channel,e i52 1
2 k i

2!; atomic units are being used
In the MQDT framework, closed channels explicitly appe
in the reaction matrices~whereas in standard scatterin
theory the collision matrices include only the physica
open channels, the discrete levels appearing as poles!: open
and closed channels are treated on the same footing. Th
realized by defining smooth radial Green’s functions, that
not present any singularities for bound states but diverge
e i,0 when r→`. The boundary conditions at infinity ar
thus not included in these radial Green’s functions. Gree
Fano, and Strinati have shown@3# that such radial Green’s
functions are defined by

Ge i
~r ,r 8!5

2

We i
@ f ,g#

gi~r .! f i~r ,!, ~2.15!

wherer . (r ,) indicates the larger~smaller! of (r ,r 8). When
the long-range field is simply Coulomb,f i(e i ,r ) is a Cou-
lomb function regular atr 50 andgi(e i ,r ) is irregular and
forms a radial basis withf. Both f andg are normalized to the
energy. A standard choice is to setf and g as oscillating at
larger with equal amplitude and 90 degrees out of phase~for
e.0! and with their WronskianWe i

@ f ,g#52/p. A straight-
forward consequence is that the Green’s operators use
MQDT, which will be noted G0 are different from the
Green’s operatorsG0 of Eqs.~2.8! to ~2.12!. It can be shown
that

G0~E!5G0~E!2p(
i

Q~2e i !uf i~E!&^f i~E!u~ tanb i !
21,

~2.16!

whereb i is the accumulated phase function measuring
number of half-wavelengths betweenr 50 andr 5` @for a
Coulomb field of chargeZ, we have b i5p(n i2 l i) and
tanbi5tanpni , wheren i52Z/k i is the effective quantum
number of the outer electron!. The phase function can b
expressed simply in terms of the Jost functions of the lo
range potential extrapolated to negative energies~see Ref.
@23#!. Q is the step function: the last term thus appears o
for closed channels and cancels the possible singularitie
G0 .

(3) Short-range interactions.The interactionV is short
range, limited to the region inside the ion core radiusr 0 :

Vur &5Q~r 2r 0!Vur &. ~2.17!

This gives rise to the following physical picture: outside t
core, the outer electron only sees a long-range, centr
symmetric local field, included withinH0 . Inside the core
the electron has a complicated motion due to the noncen
and nonlocal interactions, but the translation of these sh
range effects outside the core amounts to inducing ra
phase shifts, theK operator elements, that are expected
have smooth variations with the energy of the outer electr
which is subjected far outside the core to a comparativ
weak long-range force.

On the mathematical standpoint, we take the LS equa
for standing waves, Eq.~2.12!, choose a set of nonperturbe
channels~in practice a truncated set! given by the expression
~2.13! with the Green’s operatorG0 given by Eq. ~2.16!.
r
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Because each core state has a definite energy,G0 can be
reduced, by using Eq.~2.14! and the closed-form expressio
of the radial Green’s function~2.15! to

^r uG0ur 8&5 (
j P$O1C%

u j ~Ej
1!&^ j ~Ej

1!uGe j
~r ,r 8!,

~2.18!

where the sum runs on open and closed channels. With
help of expressions~2.15! and~2.17! the LS equation outside
the core (r .r 0) takes the form

^r uc i&[c i~r !5 f i~r !u i &2(
j

gj~r !u j &K ji ~E!. ~2.19!

TheK ji are the on-the-energy shell elements of theK opera-
tor:

K ji ~E!5^ f j~e j !u^ j ~Ej
1!uKu i ~Ei

1!&u f i~e i !&, ~2.20!

whereK is defined by

K52pV1VG0K. ~2.21!

By projecting this last equation over a finite basis, theKi j
elements can be found by solving the corresponding inte
equations on a coarse energy mesh~e.g.,@24#! or by adapting
the Schwinger variational method to equations with smo
radial Green’s functions@25,26#. In practice, theK matrix, or
related quantum defectsm i j [p21 arctanKij can also be de-
termined fromR-matrix calculations@27# or by fitting to ex-
perimental data or toab initio computations@28#.

Equation~2.19! is the generic building block of MQDT
wave functions. The total standing-wave function, deno
cr, is obtained by superposing the functionsc i(r ), each
with its channel coefficientBi

r :

cr~r !5(
i

u i &FBi
r f i~r !2(

j
Bj

rKi j gi~r !G . ~2.22!

The r superscript labels the eigenstates of the open-cha
interaction. TheBi

r coefficients are found by examinin
asymptotic boundary conditions. For example, ionizat
corresponds to incoming-wave boundary conditions~@29# for
the atomic case,@30# for the molecular case!. If we assume
that the final state corresponds to a measurement of the
tron’s channeli ~basically its angular momentum and its co
pling with the ion’s angular momentum! then the final state
is simply given by the solution of the LS equation,

uc i
2&5uf i&1G0

2T†uf i&, ~2.23!

which can be set by Eq.~2.9! as a superposition of standin
wavesucr&,

uc i
2&5(

r
Ur ie

2 iptr cosptrucr&, ~2.24!

HereU diagonalizesT andK, e2iptr being the eigen-phase
shifts of the~open-channel! S matrix, and the eigenchanne
functionsucr& are given by
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2046 PRA 59A. MATZKIN
ucr&5 (
i PO

Uir
† @ uf i&1G0Kuf i&]. ~2.25!

Then by imposingcr(r )→^r ucr& in the limit r→`, we
get by matching Eqs.~2.22! and ~2.25! the following rela-
tions for closed and open channels:

i PC, Bi
r1 (

j P$O1C%
Bj

rKi j ~ tanb i !
250,

i PO, H Bi
r5Uir

† ,

(
j P$O1C%

Bj
rKi j 52p (

j PO
Uj r

† Ki j 5Uir
† tanptr ,

~2.26!

which is the usual MQDT system that can be solved in
standard manner@1#, so as to get the values of the pha
function b i corresponding to the physical bound-state en
gies, as well as the eigen-phase-shiftstr and theBi

r coeffi-
cients.

We have not yet included explicitly the antisymmetry r
quirement. Let us considerN identical particles, i.e., the
outer electron of coordinater colliding on an ion containing
N21 electrons. Then the formulas given above in this s
section hold whenK is replaced by

Keff52p„I 2~N21!PN,N21…V1VG0Keff , ~2.27!

wherePN,N21 is a permutation operator exchanging theNth
with the (N21)th electron. The derivation of Eq.~2.27! fol-
lows closely from the standard approach employed in s
tering theory:N different arrangements have to be cons
ered, each one corresponding to a different outer elect
Since standing waves and related operators replace the
usual traveling waves, the demonstration follows from o
results of Sec. III and is briefly outlined in Appendix A. W
will not explicitly deal with antisymmetrization in the rest o
the paper since the form of the equations are not modifi
But obviously, antisymmetrization has to be taken into
count when calculating the reaction matrix.

III. REARRANGEMENT COLLISION FORMALISM
FOR STANDING WAVES

When we consider rearrangement collisions, the to
Hamiltonian of the system is partitioned in several wa
each of them corresponding to a given arrangement of
system:

H5Ha1Va5Hb1Vb5¯ . ~3.1!

ufa i
(E)& is an eigenstate ofHa ; uca i

(E)& is the solution of
H corresponding to an ‘‘initial’’ nonperturbedi state~chan-
nel! in arrangementa. The ingoing and outgoing wave LS
equations are well known,

uca i

6 ~E!&5ufa i
~E!&1Ga

6~E!Vauca i

6 ~E!&, ~3.2!

where the Green’s operatorsGa
65(E2Ha6 il)21 obey the

resolvent equations~2.5! that can be set here as

G621~E!5Ga
6212Va5Gb

6212Vb5¯ . ~3.3!
a

r-

-

t-
-
n.
ore
r

d.
-

l
,
e

By introducing a set ofT operators, the LS equations a
formally solved. For example, with

Taa5Va1VaGa
1Taa5Va1VaG1Va ~3.4!

the outgoing LS equation~3.2! takes the form

uca i

1 &5ufa i
&1Ga

1Taaufa i
&. ~3.5!

It is straightforward to get cross-arrangement transit
operators such thatGb

1Tba5Ga
1Taa by simply using Eq.

~3.3!. The well-known result is

Tba5Va1VbG1Va. ~3.6!

It is also recognized thatTba and

T̄ba5Vb1VbG1Va ~3.7!

have the same on-the-energy shell elements but do not o
the same LS equation, since

uca i

1 &5 ilGb
1ufa i

&1Gb
1T̄baufa i

&. ~3.8!

The standing-wave analog of Eq.~3.2! is

uca i
&5ufa i

&1GaVauca i
&. ~3.9!

Then direct iteration leads to

uca i
&5ufa i

&1GaKaaufa i
& ~3.10!

with

Kaa5Va1VaGaKaa5Va~ I 2GaVa!215~ I 2VaGa!21Va

~3.11!

but there is no analog for standing-wave reaction operator
the last equality~the formal solution for theT operators! of
Eq. ~3.4!. Yet it can easily be established that the princip
value Green’s operator of the full interaction,G, is related to
the a arrangement Green’s operatorGa by

G5~ I 2GaVa!21~Ga1Ra!5~Ga1R̄a!~ I 2VaGa!21,
~3.12!

whereRa andR̄a are ‘‘rest’’ terms, which are not present i
Eq. ~3.3!, and are found to be given by

Ra52p2d~E2Ha!Vad~E2H ![2p2daVad,
~3.13!

R̄a52p2d~E2H !Vad~E2Ha![2p2dVada .
~3.14!

We are now looking for a cross-arrangement reaction
eratorKba such that

GaKaa5GbKba. ~3.15!

This useful relation allows to write the LS equation~3.10!
for an initial nonperturbed wave in arrangementa in terms
of the Green’s operator in arrangementb and of the cross-
arrangement reaction operatorKba whose expression we
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now derive by taking the right-hand equality of Eq.~3.11!
and the relations~3.12! successively, we get

GaKaa5Gb~ I 2VbGb!21Va

1$@~ I 2GbVb!21Rb2R̄a~ I 2VaGa!21#Va%.

~3.16!

Now from Eqs.~3.3! and ~3.12! we deduce

da5~ I 1GVa!21d~ I 2VaGa!5~ I 2GaVa!d~ I 1VaG!21

~3.17!

and use this relation to show that the terms between brac
in Eq. ~3.16! can be set as

2p2~ I 2GbVb!21$db~Vb2Va!da%Kaa, ~3.18!

which vanishes becauseVb2Va5Ha2Hb is projected onto
states corresponding to different arrangements but having
same energy. We have then found an operatorKba that can
be set, following Eq.~3.16! and iterating once as

Kba5~ I 2VbGb!21Va5Va1VbGbKba. ~3.19!

Notice thatTba can also be written in a similar form, bu
Kba cannot be formulated like Eq.~3.6!. In fact, from Eqs.
~3.19! and ~3.12! we see that

Kba5Va1VbGVa2Vb~ I 2GbVb!21RbVa. ~3.20!

We can also display an operatorK̄ba having the same
on-shell elements asKba and related toKba, as in the case
of the T operators byK̄ba5Kba1Vb2Va. Then it may be
shown that

K̄ba5Vb~ I 2GaVb!215Vb1K̄baGaVa. ~3.21!

It is interesting to note that the LS equation withK̄ba, given
sinceGb(Vb2Va)ufa i

&5ufa i
& by

uca i
&5GbK̄baufa i

& ~3.22!

has only a homogeneous term. The infinitesimal term app
ing in the LS equations for traveling waves@see Eq.~3.8!#
that was in question ever since the early works on rearran
ment collisions theory@31# does not appear for standin
waves. There does not seem to be any inconsistency in
latter case, precisely because the principal-value Green’s
erators are not invertible.

Half-on-shell integral equations are readily derived fro
the expressions~3.19! or ~3.21!, thus avoiding recourse to
the damping equation and related unitarity arguments, as
been done previously in the case of the scattering of
identical particles@17,32# ~identical particle scattering is
considered in Appendix A!. As usual in rearrangement sca
tering,K is the matrix of the whole set of same-arrangem
and cross-arrangement operators. It can be checked thatKaa

is Hermitian, and that relations of the typeKab†5K̄ba lead
to a symmetric on-shellK matrix for real potentials. More-
over, these results can be extended in a straightforward m
ner when more than two arrangements are considered.
ts
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IV. MULTIARRANGEMENT MQDT

A. General remarks

We have derived in the last section a formalism for co
sions with rearrangement for the standing-wave type of w
functions. We have seen in Sec. II B how multichannel qu
tum defect theory follows from the general formulation
standing-wave scattering. We then expect multiarrangem
MQDT to follow in a straightforward manner from the re
sults of Sec. III. This is done so by setting the mul
arrangement MQDT Green’s operator in arrangementa as

Ga5Ga2Pa , ~4.1!

where

Pa~E!5p(
i

Q~2e i !~ tanba i
!21ufa i

~E!&^fa i
~E!u

~4.2!

‘‘projects’’ on the closed channels in arrangementa and acts
in a similar way to thed(E2Ha) type of operators. It is not
to be confused with the principal value symbol, althou
addition of this term toGa cancels the closed-channel sing
larities and thus acts similarly to the principal value symb
in the open-channel Green’s operator. Hereba i

is the accu-
mulated phase function, introduced in Eq.~2.16! above, for
the arrangementa. Note thatPa vanishes in the absence o
closed channels.

The next step is to replace, in Eq.~3.11!, the operators
Ga , Ra , and R̄a by Ga , Ra , and R̄a , given, respectively,
by Eq. ~4.1! and

Ra5Pa~ I 1VaG!2p2daVad, ~4.3!

R̄a5~ I 1GVa!Pa2p2dVada . ~4.4!

Then by defining

Kaa52p21Va1VaGaKaa52p~ I 2VaGa!21Va

~4.5!

we are led to the analog of Eq.~3.16!:

GaKaa52pGb~ I 2VbGb!21Va2p$@~ I 2GbVb!21Rb

2R̄a~ I 2VaGa!21#Va%. ~4.6!

Now by using Eq.~3.17! and further demonstrating that

Gb~Vb2Va!Pa5Gb~Vb2Va!Pa5Pa ~4.7!

the braces in Eq.~4.6! are seen to vanish, so that the resu
of Sec. III hold ~with the conventional2p factor added in
the definition of the reaction operators!.

We then conclude that the reaction matrices are obtai
by solving the operator equation

Kba52pVa1VbGbKba2VbPbKba, ~4.8!

wherea andb label different or identical arrangements. Th
solution of the total Hamiltonian corresponding to a nonp
turbed wave in arrangementa and channeli ,ufa ,&, is given
by one of the equivalent expressions
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uca i
~E!&5ufa i

~E!&2p21Ga~E!Kaa~E!ufa i
~E!&,

~4.9!

uca i
~E!&52p21Gb~E!K̄ba~E!ufa i

~E!&, ~4.10!

and the solution ofH corresponding to a nonperturbed wa
in arrangementb and channelj is given in terms ofufb j

& by

ucb j
~E!&5ufb j

~E!&2p21Gb~E!Kbb~E!ufb j
~E!&

~4.11!

or

ucb j
~E!&52p21Ga~E!K̄ab~E!ufb j

~E!&. ~4.12!

For simplicity we consider here only two arrangements. T
total wave function is then the superposition

ucr&5(
i

Bi
ruca i

&1(
j

Bj
rucb j

&, ~4.13!

which can be seen as a consequence of the orthogonali
the Hilbert spaces spanned by the states that develop
different initial channels.

The reaction matrices can be calculated by coupled i
gral equations from their definitions in terms of the intera
tion potentials and the principal value Green’s operators.
coefficients are determined by matchingucr& to asymptotic
open-channel functions. As in Sec. II above, ther super-
script has been introduced to anticipate the manifold
standing waves corresponding to a given physical proce

For definiteness, this will be illustrated below on a sp
cific example. Since in most problems approximate Hami
nians are used, we don’t expect the equality between E
~4.9! and~4.10! to hold exactly. Rather Eqs.~4.9! and~4.10!
will alternatively be used in different domains where the a
proximations introduced in the Hamiltonians have a sens

B. Ionization and dissociation in H2

H2 has always been the prototype of the application
MQDT to molecular problems. Although dissociation relat
effects were studied by combining MQDT with a perturb
tive or R-matrix approach@8,9#, only recently was a work
published in which a unified quantum defect theory tre
ment is carried out@12#. This treatment was then used as
base for the study of wave packets@13#. Notwithstanding,
Jungen and co-workers do not explicitly use some equiva
of multi-arrangement MQDT. They determine an effecti
total reaction matrix by assuming the form of the asympto
wave functions@see their Eq.~1! in both articles# while con-
sidering two types of wave functions, inner~for small inter-
nuclear distanceR! and outer~large R! dissociative func-
tions, the parameters being found by matching th
functions at some boundary. Our aim in the following is n
to conduct practical calculations of a definite process invo
ing both ionization and dissociation—the problem will b
tackled elsewhere@33#—but rather to give an illustration o
the standing-wave formalism, i.e., how a multiarrangem
quantum defect theory may, in principle, be used to tr
e
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processes involving different arrangements, that are here
two possible fragmentation ways of H2.

As in Ref.@12#, we will suppose that the molecular energ
is below the threshold for dissociative ionization, and th
dissociation is correctly described by the sole covalent c
figuration H(1s)1H(nl). Then the particles may gather i
two different arrangements: I for ionization, describin
e22H2

1 asymptotic states~r radial coordinate! as well as
scattering of negative energy electrons giving rise to
bound states of H2; and D for dissociation, that is,
H(1s)-H(nl) scattering~R coordinate!. The Hamiltonian is
consequently partitioned asH5HI1VI5HD1VD.

The Hamiltonians and the coupled and uncoupled w
functions in theI arrangement have been repeatedly us
@34,28,35# and will not be given here. Sinceuf I i

&[u f i&u i &
only include bound states of the ion, we shall require
vibrational functions to be bounded~i.e., ^Ruf I i

&50 for
largeR!.

For the D arrangement, we will take the Born
Oppenheimer~BO! approximated Hamiltonian.HD then
contains the electronic and rotational Hamiltonians, as w
as the kinetic term of the vibrational Hamiltonian, whileVD

includes the internuclear interactionR21, the electronic en-
ergy and the constant term2VD(R→`)5 1

2 (11n22). The
eigenstates ofHD are set as

^RufDd
&5Fd~R!ufd

el&ufd
rot&[Fd~R!ud&, ~4.14!

whereFd(R) is a ~standing! free function regular at the ori
gin ~sine type! andGd(R) is the irregular companion.

As stated, the reaction matrices may, in principle, be
tained from coupled integral equations. There are differ
manners of setting up the numerical problem, depending
which technique is used~these are described, for example,
the review papers@36,37# and references therein!. Employing
a formulation with half-on-shell integral equations dras
cally reduces the dimension of the linear system to be solv
the disadvantage is then that a new system has to be se
for different energies. Briefly, to calculate the on-shell e
mentsKb ia j

ba (E,E)5^fb i
(E)uKbaufa j

(E)& where the greek

lettersa andb stand forI or D and the lowercase latin letter
i and j label the channels, Eq.~4.8! is taken half-on-shell
between̂ fb i

(Eni
)u and ufa j

(E)&. The Green’s operatorGb

is replaced by its eigenfunction expansion over a trunca
set of channels; thus half-on-shell reaction matrix eleme
appear. ThePb(E) operator, as given by Eq.~4.2!, gives rise
to on-shell matrix elements. The following equation betwe
matrix elements is obtained:

Kb ia j

ba ~Eni
,E!5Vb ia j

a ~Eni
,E!

1(
k
E

nk

Vb ibk

b ~Eni
,Enk

!

ek2enk

Kbka j

ba ~Enk
,E!

2(
k

Q~2ek!@ tanbbk
~E!#21

3Vb ibk

b ~Eni
,E!Kbka j

ba ~E,E!. ~4.15!
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A quadrature, symbolized by*nk
, has been imposed on th

equation: the principal part integration over positive energ
and the formal sum running over all the discrete nega
energies for each channelk in the arrangementb are replaced
by the sum over the quadrature pointsEnk

@or equivalently

enk
by a suitable generalization of Eq.~2.14!#. Eni

is thus one
of the quadrature points, corresponding to a given energ
channeli. By matching the energyE to one of the quadrature
points, Eq.~4.15! leads to the following matrix equation:

K j
baW ~E!5Vj

aW ~E!1V1K j
baW ~E!1V2K j

baW ~E!, ~4.16!

where V1 (V2) is the matrix corresponding to the seco
~third! term of the right-hand side of Eq.~4.15!. As denoted

by the arrow,K j
baW is a vector containing thej th column of

the half-on-shell reaction matrixKb ia j

ba ; if qi is the total num-

ber of quadrature points for channeli and the total number o

channels is labeled byN, then K j
baW contains(k51

N qk ele-
ments. Equation~4.16! may be set as

@ I 2V#K j
baW

~E!5Vj
aW ~E!. ~4.17!

To solve the system, the matrixV is first calculated at the
selected energyE ~although onlyV2 and a small submatrix
of V1 explicitly depend onE!. The inhomogeneous term
VW j

a(E) is then determined, and the system is solved for
j th column ofKb ia j

ba by an appropriate method. For examp

the linear algebraic method developed by Collins a
Schneider@38,39# combines an iteration process with a var
tional scheme and is well suited to solve a large system
linear equations; moreover, it has successfully been app
within a different theoretical framework, to electron scatt
ing from H2

1. The other columns ofKb ia j

ba are solved by

calculating the corresponding inhomogeneous vector and
using the same potential matrixV. In a final step, the on-
shell elements of the reaction matrix are recovered. Note
in all cases theV matrix only contains same-arrangeme
potential elements, and thusV enters in the computations o
both same-arrangement and cross-arrangement reaction
trices: the cross-arrangement interaction is only explic
calculated to the first order~this is a direct consequence o
the propagator property of the Green’s operators!.

Details of the calculations and different methods of a
proximation will be discussed in a future paper. Here, th
remarks are in order. First, when the outer electron is wit
the reaction zone, the Born-Oppenheimer approxima
holds also in theI arrangement, and the free channel fun
tions uf I i

& may accordingly be expanded as BO functions
a rotational and vibrational transformation@28#. The same
holds for the Green’s operatorGI . Second, working with
reaction matrices that include closed channels and ‘‘smoo
Green’s functions, and with energy-normalized radial fun
tions is expected to reduce the size of the energy mesh
nally, we have not explicitly included the antisymmetry r
quirements in the potential matrix elements of Eqs.~4.15!–
~4.17!; as advanced at the end of Sec. II, doing so does
s
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change the form of the equations nor the structure of
linear system, although it does complicate the calculation
the potential matrix elements.

Now, taking Eqs.~4.9! and ~4.11! with a5I and b5D
and reducing the Green’s operators to on shell radial~r or R!
Green’s functions as in Sec. II leads to

^r uc I i
&5 f i~r !u i &2(

i 8
gi 8~r !u i 8&Kii 8

II , r .r 0 ,

~4.18!

^RucDd
&5Fd~R!ud&2(

d8
Gd8~R!ud8&Kdd8

DD , R.R0 .

~4.19!

whereKii 8
II andKdd8

DD are the on-the-energy shell matrix el
ments of the same-arrangement reaction operators@for ex-
ampleKii 8

II (E)5^f I i
(E)uKII (E)uf I i 8

(E)&#. From Eqs.~4.10!
and ~4.12! we get expressions with the cross-arrangem
reaction operators

^Ruc I i
&52p21^RuGDK̄DI uf I i

&

52(
d8
Gd8~R!ud8&K̄d8 i

DI , R.R0 , ~4.20!

and

^r ucDd
&52p21^r uGIK̄

ID ufDd
&

52(
i 8

gi 8~r !u i 8&K̄ i 8d
ID , r .r 0 . ~4.21!

Notice that because the reduction of the Green’s opera
takes the simple MQDT form only when the perturbati
potentials vanish~r .r 0 or R.R0! the expressions~4.18! to
~4.21! are only valid in definite regions of the~R,r! plane
represented in Fig. 1. As usual, within MQDT the wa
function inside the core is not known; the physical core d
fined by bothr ,r 0 andR,R0 is gray dashed on the figure
The solid lines represent Eqs.~4.18! and~4.20!, that we can
think of as the scattered waves from an initial nonperturb
stateu f i&u i &, including exponentially diverging functions fo

FIG. 1. The arrows picture the different terms of the wave fun
tion in the radial coordinate~R for the nuclei,r for the electron!
plane, that are valid outside the core~in gray!. The solid lines rep-
resentuc I i

& and the dotted lines representucDd
&.
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closed channels. The dotted lines represent an initially n
perturbed stateuFd&ud& in the D arrangement scattering int
other dissociation waves, Eq.~4.19!, or into I arrangement
waves, Eq.~4.21!.

The total wave function is accordingly given by E
~4.13!. For r @r 0 it is convenient to use Eqs.~4.18! and
~4.21! since ^r uGI is known ~and for R@R0 the other two
pairs!. The following expressions are obtained~with the on-
shell equalitiesKid8

ID
5K̄ id8

ID andKdi8
DI

5K̄di8
DI !:

^r ucr&5 (
i P$I O1I P%

u i &H Bi
r f i~r !

2F(
i 8

Bi 8
r Ki 8 i

I I
1(

d8
Bd8

r Kid8
ID Ggi~r !J , r .r 0 ,

~4.22!
fu

to
n

st;
e
th

v
nc
os
in

r
fo
on
n-
^Rucr&5(

d
ud&H Bd

rFd~R!

2F(
d8

Bd8
r Kd8d

DD
1(

i 8
Bi 8

r Kdi8
DI GGd~R!J , R.R0 .

~4.23!

In a final step, these two equations are matched to
standing-wave decompositions of ingoing ionization and
going dissociation functions. The basic idea is the same a
the single arrangement problem of Sec. II@see Eqs.~2.23!–
~2.26!# although the calculations are a bit more involved: f
eachr, there are now not one, but two eigenchannel fu
tions ~one per arrangement! that have both the same pha
shift ~see Appendix B!. Since we are considering both close
(I C) and open (I O) channels in theI arrangement and only
open channels in theD arrangement, the result is
i PI C , (
i 8P$I O1I C%

Bi
rKii 8

II
1 (

d8PD

Bd8
r Kid8

ID
1Bi

r tanb i50,

i PI O , H Bi
r5Uir

† ,

(
i 8P$I O1I C%

Bi 8
r Kii 8

II
1 (

d8PD

Bd8
r Kid8

ID
52p (

j P$I O1D%
Ki j Uj r

† 5Uir
† tanptr , ~4.24!

dPD, H Bd
r5Udr

† ,

(
d8PD

Bd8
r Kdd8

DD
1 (

i 8P$I O1I C%

Bi 8
r Kdi8

DI
52p (

j P$I O1D%
Kd jUj r

† 5Udr
† tanptr ,
ons
v-
ays

e
for-
the
T
ic

nds
y be
al

iar-
ent
cal

o-
ys-

n,
whereKi j are the elements of the open channels physical
reaction matrix with eigenvalues2p21 tanptr , composed
with the blocksKII , KID , KDI , andKDD; 2pK is related to
the totalS matrix by a Cayley transform. HereU diagonal-
izesS. We are thus led to solving a system similar in form
the well-known typical MQDT system. The bound-state e
ergies as well as the eigenphaseshiftstr of the ~ionization
and dissociation! open-channel interactions are found fir
then, for eachr, the Bi

r coefficients are determined at th
energyE of interest. As expected, the values taken by
phase function in theI arrangement,b i , now also depend on
the waves scattered from theD arrangement.

V. CONCLUSION

In this article, we have first developed a standing-wa
rearrangement scattering formalism in which the wave fu
tions are given in terms of same-arrangement and cr
arrangement reaction operators. A few works using stand
waves in reactive collisions have been done in the past~e.g.,
@40#!, but the specific characteristics of standing-wave ope
tors were not taken into account: the expressions valid
traveling waves were employed in the standing-wave c
ll

-

e

e
-
s-
g

a-
r
-

text, although it has been known for quite a long time@41,32#
that such a direct transposition for infinite-order expressi
may lead to errors~as seen in Sec. III, the relations for tra
elling wave equations and collision operators do not alw
hold for standing waves!.

By examining the relation between MQDT and th
Lippmann-Schwinger approach, we have then derived a
malism for standing-wave rearrangement scattering with
explicit inclusion of closed channels. The methods of MQD
have by now far outpassed their original domain of atom
quantum defects, and since the formalism of Sec. IV exte
these methods to rearrangement scattering, the theory ma
seen as a multiarrangement MQDT. Besides giving a form
basis for ongoing research, the development of a mult
rangement quantum-defect theory concurs with curr
works concerned by the connection of different theoreti
approaches to treat problems involving simultaneous m
tions of the nuclei and of an outer electron in diatomic s
tems.
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APPENDIX A: ANTISYMMETRIZED REACTION
OPERATOR

We consider an electron colliding on a target contain
N21 electrons. The Hamiltonian is partitioned following

H5H11V15H21V25¯5HN1VN , ~A1!

where the index indicates which electron is initially colli
ing. Suppose that theNth electron, in statei collides on
the core represented by the antisymmetrized prod
i 1(r1 ,...,rN21). Then in the notation of Sec. IV A the solu
tion is given by

ucNi
&5ufNi

&2p21GNKNNufNi
&, ~A2!

where N labels the arrangement and we shall set^r ufNi
&

[ f i(r N)u i N&.
As known, when antisymmetrizing, we only need to co

sider theN21 permutationsPN,g (gP$1, . . . ,N21%) that
do not leave the core unchanged. The antisymmetrize
then given up to a normalizing constant by

A5I 2 (
g51

N21

PN,g ~A3!

and the antisymmetrized solution isAucNi
&. With the help of

the key Eq.~3.15! and by reducingGN , we get forr N.r 0

^r NuAGNKNNufNi
&5p(

j
gj~r N!u j N&

3^fNj
uFKNN2 (

g51

N21

PN,gKgNG ufNi
&.

~A4!

We further take into account the finite spatial extent of
core, so that forr N.r 0 we have^r NuAufNi

&5 f i(r N)u i N&,
and finally

^r NuAucNi
&5 f i~r N!u i N&2(

j
gj~r N!u j N&^fNj

uKeffufNi
&

~A5!

whereKeff is given by the expression between brackets@ # in
Eq. ~A4!. It can easily be shown that, when calculating m
trix elements,Keff can be set as

Keff5KNN2~N21!PN21,NKN21N ~A6!

52p„I 2~N21!PN21,N…VN1VNGNKeff . ~A7!

In fact, since we may consider thef i(r N) to be orthogonal to
any core function, the expressions can be further simpli
when calculating the matrix elements of the reaction ope
tor.

APPENDIX B: MULTIARRANGEMENT MQDT
BOUNDARY CONDITIONS IN I 1D SCATTERING

The state vector of an ionized electron in channeli is
given by the ingoing wave,

uc I i

2&5uf I i
&1GI

2T†II uf I i
&. ~B1!
g

ct

-

is

e

-

d
a-

Although the operators here are initially defined on t
asymptotic I arrangement Hilbert space, we can envisa
them as defined on the super Hilbert space, which is
direct sum of the asymptotic spaces, on which the total c
lision matricesS or T are defined. Then there is a unita
matrix U that diagonalizesT, so thatT†II can be expressed
with the eigen-phase-shifts ofS, allowing for the introduc-
tion of the differentK operators. After some algebraic ma
nipulations and with the help of Eq.~2.9!, Eq. ~B1! is set as
a superposition of standing waves:

uc I i

2&5(
r

Ur ie
2 iptr cosptruc I r

& ~B2!

with

uc I r
&5 (

i PI O

Uir
† uf I i

&1 (
i PI O

Uir
† GIK

II uf I i
&

1 (
dPD

Udr
† GIK

ID ufDd
&. ~B3!

Then by reducing the Green’s operator, and sinceU also
diagonalizes the total reaction matrixK with diagonal ele-
ments2p21 tanptr , we obtain

^r uc I r
&5 (

i PI O

u i &Uir
† @ f i~r !2tanptrgi~r !#. ~B4!

The same reasoning gives the decomposition of the s
vector of the dissociated fragments in channeld,

ucDd

2 &5ufDd
&1GD

2T†DDufDd
&, ~B5!

into standing waves

ucDr
&5(

d
Udr

† ufDd
&1(

d
Udr

† GDKDDufDd
&

1 (
i PI O

Uir
† GDKDI uf I i

& ~B6!

and by reducingGD

^RucDr
&5(

d
ud&Udr

† @Fd~R!2tanptrGd~R!#. ~B7!

Notice that unlike the case of direct~single-arrangement!
scattering, there are now two distinct eigenchannel functio
uc I r

& and ucDr
&, but they both have a common phase sh

@compare Eqs.~B4! and ~B7! with Eq. ~1! of Ref. @12##.
Now the total wave function, Eq.~4.13!, is easily matched

to Eq. ~B4! when r→` and to Eq. ~B7! when R→` by
establishing the following relations:

^r uGIK
L ——→

r→`
^r uGIK

L2p

3 (
i P$I O1I P%

Q~2e i !~ tanb i !
21f i~r !u i &^f I i

uKL,

~B8!

whereL stands forII or ID, and the trivial equality

^RuGD5^RuGD . ~B9!

This yields the system given in Eq.~4.24!.
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